GeoJournal

, Volume 17, Issue 4, pp 581–595 | Cite as

The pleistocene glaciation of Tibet and the onset of ice ages — An autocycle hypothesis

  • Kuhle Matthias 

Abstract

During seven expeditions new data were obtained on the maximum extent of glaciation in Tibet and the surrounding mountains. Evidence was found of moraines at altitudes as low as 980 m on the S flank of the Himalayas and 2300 m on the N slope of the Tibetan Plateau, in the Qilian Shan. On the N slopes of the Karakoram, Aghil and Kuen Lun moraines occur as far down as 1900 m. In S Tibet radiographic analyses of erratics document former ice thicknesses of at least 1200 m. Glacial polishing and knobs in the Himalayas, Karakoram etc. are proof of glaciers as thick as 1200–2000 m. On the basis of this evidence, a 1100–1600 m lower equilibrium line altitude (ELA) was reconstructed for the Ice Age, which would mean 2.4 million km2 of ice covering almost all of Tibet, since the ELA was far below the average altitude of Tibet. On Mt. Everest and K2 radiation was measured up to 6650 m, yielding values of 1200–1300 W/m2. Because of the subtropical latitude and the high altitude solar radiation in Tibet is 4 times greater than the energy intercepted between 60 and 70° N or S. With an area of 2.4 million km2 and an albedo of 90% the Tibetan ice sheet caused the same heat loss to the earth as a 9.6 million km2 sized ice sheet at 60–70° N. Because of its proximity to the present-day ELA, Tibet must have undergone large-scale glaciation earlier than other areas. Being subject to intensive radiation, the Tibetan ice must have performed an amplifying function during the onset of the Ice Age. At the maximum stage of the last ice age the cooling effect of the newly formed, about 26 million km2 sized ice sheets of the higher latitudes was about 3 times that of the Tibetan ice. Nevertheless, without the initial impulse of the Tibetan ice such an extensive glaciation would never have occurred. The end of the Ice Age was triggered by the return to preglacial radiation conditions of the Nordic lowland ice. Whilst the rise of the ELA by several hundred metres can only have reduced the steep marginal outlet glaciers, it diminished the area of the lowland ice considerably.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J. T.: A Geomorphological Study of Post-Glacial Uplift with Particular Reference to Arctic Canada. Canadian J. of Earth Sciences 7, 2, 703–715 (1970)Google Scholar
  2. Bernhardt, F.; Phillips, H.: Die räumliche und zeitliche Verteilung der Einstrahlung, der Ausstrahlung und der Strahlungsbilanz im Meeresniveau. Die Einstrahlung. Abh. Meteor. Hydrol. Dienst 15, 1–227 (1958)Google Scholar
  3. Cline, R. (ed.): Climap Project: Seasonal Reconstructions of the Earth's Surface at the Last Glacial Maximum. The Geol. Soc. of America: 1–88 and maps, New York 1981.Google Scholar
  4. Dainelli, G.; Marinelli, O.: Le condizioni fisiche attuali. Risultati Geol. e Geogr. IV; Relazioni scientifiche della Spedizione Italiana De Filippi nell' Himalaya, Caracorum e Turchestan Cinese (1913–14), Ser. II, Bologna 1928.Google Scholar
  5. De Terra, H.: Geologische Forschungen im westlichen Kunlun und Karokorum-Himalaya. Wiss. Ergebn. d. Dr. Trinklerschen Zentralasien Expedition, II, Berlin 1932.Google Scholar
  6. Flint, R. F.: Glacial and Quaternary Geology. London 1967.Google Scholar
  7. Flint, R. F.: Glacial and Quaternary Geology. New York 1971.Google Scholar
  8. Gansser, A.: Geology of the Himalayas. London 1964.Google Scholar
  9. Gansser, A.: The Wider Himalaya, a Model for Scientific Research. Mat. Fys. Medd. Dan. Vid. Selsk. 40, 14, 3–30 (1983)Google Scholar
  10. v. Handel-Mazzetti, Frh. H.: Das nordostbirmanisch-westyünnanesische Hochgebirgsgebiet. Karsten-Schenck, Vegetationsbilder 17, 7–8 (1927)Google Scholar
  11. Heuberger, H.: Untersuchungen über die eiszeitliche Vergletscherung des Mount-Everest-Gebietes, Südseite, Nepal. Göttinger Geogr. Abh. 81, 29–30 (1986)Google Scholar
  12. Höfer, H. v.: Gletscher- und Eiszeitstudien. Sitzungsber. d. Akad. d. Wiss. Wien, Math.-Nat. Kl. 1, 79, 331–367 (1879)Google Scholar
  13. Iwata, S.; Yamanaka, H.; Yoshida, M.: Glacial Landforms and River Terraces in the Thakkhola Region, Central Nepal. J. of Nepal Geol. Soc. 2, spec. iss. 81–94 (1982)Google Scholar
  14. Kuhle, M.: Klimageomorphologische Untersuchungen in der Dhaulagiri-und Annapurna-Gruppe (Zentraler Himalaya). Tagungsber. u. wiss. Abh. 42. Dt. Geographentag 1979, Wiesbaden 42, 244–247 (1980)Google Scholar
  15. Kuhle, M.: Erste Deutsch-Chinesische Gemeinschaftsexpedition nach Tibet und in die Massive des Kuen-Lun-Gebirges. Tagungsber. u. wiss. Abh. 43. Dt. Geographentag 1981, Mannheim 43, 63–82 (1981)Google Scholar
  16. Kuhle, M.: Der Dhaulagiri- und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Z. f. Geomorph., Suppl. Bd. 41, 1 u. 2, 1–229, u. 1–184 (1982)Google Scholar
  17. Kuhle, M.: DFG-Forschungsbericht mit Ergebnissen der Chinesisch-Deutschen Gemeinschaftsexpedition nach S-Tibet und in die N-Flanke des Mt. Everest (Chomolungma) 1984, 1–52 1985.Google Scholar
  18. Kuhle, M.: Schneegrenzbestimmung und typologische Klassifikation von Gletschern anhand spezifischer Reliefparameter. Petermanns Geogr. Mitt. 130, 41–51 (1986a)Google Scholar
  19. Kuhle, M.: Absolute Datierungen zur jüngeren Gletschergeschichte im Mt. Everest-Gebiet und die mathematische Korrektur von Schneegrenzberechnungen. Tagungsber. d. 45. Geographentages, Berlin 1985, 45, 200–208 (1986b)Google Scholar
  20. Kuhle, M.: Former Glacial Stades in the Mountain Areas Surrounding Tibet — in the Himalayas (27°–29° N: Dhaulagiri, Annapurna, Cho Qyu and Gyachung Kang areas) in the South and in the Kuen Lun and Qilian Shan (34°–38° N: Animachin, Kakitu) in the North, pp. 437–473. In: Joshi, S. C. (ed.) Nepal Himalaya: Geo-Ecological Perspectives. New Delhi 1986c.Google Scholar
  21. Kuhle, M.: Zur Geomorphologie der nivalen und suvnivalen Höhenstufe in der Karakorum-N-Abdachung zwischen Shaksgam-Tal und K2-N-Sporn: Die quartäre Vergletscherung und ihre geoökologische Konsequenz. 46. Dt. Geographentag 1987, München, Tagungsber. u. wiss. Abh. 46 (1987a) (in print)Google Scholar
  22. Kuhle, M.: Subtropical Mountain- and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. GeoJournal 1987 14, 4, 393–421 (1984b)Google Scholar
  23. Kuhle, M.: The Problem of a Pleistocene Inland Glaciation of the Northeastern Qinghai-Xizang Plateau (Tibet), pp. 250–315. In: Hövermann, J.; Wang Wenying (eds.) Reports on the Northeastern Part of the Qinghai-Xizang (Tibet) Plateau by the Sino-W. German Scientific Expedition. Beijing 1987c.Google Scholar
  24. Lauscher, F.: Strahlungs- und Wärmehaushalt. Ber. Dt. Wetterdienst 4, 22, 21–29 (1956)Google Scholar
  25. Lautenschlager, M.; Herterich, K.; Schlese, U.; Kirk, E.: Simulation of the January Climate 18 000 YBP. Report MPG-Inst. f. Meteorologie 9, 87, 11, 1–42 (1987)Google Scholar
  26. Lichtenecker, N.: Die gegenwärtige und die eiszeitliche Schneegrenze in den Ostalpen. Verhandl. d. III. Intern. Quartär-Konferenz Wien 1936, 141–147, 1938.Google Scholar
  27. Louis, H.: Schneegrenze und Schneegrenzbestimmung. Geogr. Taschenb. 1954/55, 414–418, Wiesbaden 1955.Google Scholar
  28. v. Loczy, L.: Die wiss. Ergebnisse der Reise des Grafen Bla Széchéniy in Ostasien 1877–1880, 3. Abschn. Geologie. 1, 307–836, Wien 1893.Google Scholar
  29. Mörner, N. A.: Faulting, Fracturing and Seismicity as Functions of Glacio-Isostasy in Fennoscandia. Geology 6, 41–45 (1978)Google Scholar
  30. Norin, E.: Quaternary Climatic Changes within the Tarim Basin. Geogr. Review 22, 591–598 (1932)Google Scholar
  31. Norin, E.: The Pamirs, K'unlun, Karakorum and Chang T'ang Regions. Sino-Svedish Expedition. I. Geography 54, III, 1, 1–61, 1982.Google Scholar
  32. Porter, S. C.: Quaternary Glacial Record in Swat Kohistan, West-Pakistan. Geol. Soc. of America Bull. 81, 5, 1421–1446 (1970)Google Scholar
  33. Prinz, G.: Beiträge zur Glaziologie Zentralasiens. Mitt. a d. Jahrb. d. Kgl. Ungar. Geolog. Anst. 25, 127–335 (1927)Google Scholar
  34. Schneider, H.-J.: Tektonik und Magmatismus im NW-Karakorum. Geolog. Rundschau 46, 426–476 (1957)Google Scholar
  35. Schroder, J. F.; Saqid Khan, M.: High magnitude geomorphic processes and Quaternary chronology, Indus Valley and Nanga Parbat, Pakistan. Zeitschr. f. Geomorph. Suppl. Bd. Leicester Symposium, March 21 st–23 rd. 1988 on “The Neogene of the Karakoram and Himalayas”. (in print)Google Scholar
  36. Shi, Yafeng; Wang Jing-tai: The Fluctuations of Climate, Glaciers and Sea Level since Late Pleistocene in China. Sea Level, Ice and Climatic Change. Proceedings to the Canberra Symposium, 12/79 13, 1, 1979.Google Scholar
  37. Tafel, A.: Meine Tibetreise. Eine Studienreise durch das nordwestliche China und durch die innere Mongolei in das östliche Tibet. 2 Bde., Karte, Stuttgart 1914.Google Scholar
  38. Trinkler, E.: Geographische Forschungen im Westlichen Zentralasien und Karakorum-Himalaya. Wiss. Ergebnisse d. Dr. Trinklerschen Zentralasien-Expedition I, 1–133, Berlin 1932.Google Scholar
  39. v. Wissmann, H.: Die heutige Vergletscherung und Schneegrenze in Hochasien mit Hinweisen auf die Vergletscherung der letzten Eiszeit. Akad. d. Wiss. u. d. Lit., Abh. d. math.-nat. wiss. Kl. 14, 1103–1407 (1959)Google Scholar
  40. Xie Zichu: Qinghai-Glacier Map (ELA). Science Press, Beijing 1984.Google Scholar
  41. Yamanaka, H.: Radiocarbon Ages of Upper Quaternary Deposits in Central Nepal. Sci. Rep. Tohoku Univ., 7th ser. (Geogr.) 32, 1, manuscript, 1932.Google Scholar
  42. Zabirov, R. D.: Oledenenie Pamira. Moskau 1955.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Kuhle Matthias 
    • 1
  1. 1.Institute of GeographyUniversity of GoettingenGoettingenGermany

Personalised recommendations