Cell and Tissue Research

, Volume 162, Issue 4, pp 439–457 | Cite as

Larval and adult eye of the Western Rock Lobster (Panulirus longipes)

  • V. B. Meyer-Rochow
Article

Summary

A number of differences exists between the compound eyes of larval and adult rock lobsters, Panulirus longipes. The larval eye more closely resembles the apposition type of compound eye, in which retinula cells and rhabdom lie immediately below the cone cells. The adult eye, on the other hand, is a typical clear-zone photoreceptor in which cones and retinula cell layers are separated by a wide transparent region. The rhabdom of the larval eye, if cut longitudinally, exhibits a “banded” structure over its entire length; in the adult the banded part is confined to the distal end, and the rhabdom is tiered. Both eyes have in common an eighth, distally-located retinula cell, which possesses orthogonally-oriented microvilli, and a peculiar lens-shaped “crystal”, which appears to focus light onto the narrow column of the distal rhabdom. Migration of screening pigment on dark-light adaptation is accompanied by changes in sensitivity and resolution of the eye. Retinula cells belonging to one ommatidium do not arrange into one single bundle of axons, but interweave with axons of four neighbouring facets in an extraordinarily regular fashion.

Key words

Compound eye Crustacea Photoreceptor fine structure Dark/light-adaptation Light and electron microscopy 

Zusammenfassung

Strukturelle Unterschiede bestehen zwischen dem larvalen und adulten Auge der Languste Panulirus longipes. Im Larvenstadium ist das Auge vom Appositionstypus, aber sobald die freischwimmende Larve ihr planktonisches Leben aufgibt, verändert sich das Auge zu einem „Superpositionsapparat”, dessen Charakteristikum die zwischen dioptrischen und rezipierenden Teil geschobene pigmentfreie Zone ist. Im Larvenauge ist das gesamte spindelförmige Rhabdom gebändert; im Auge des adulten Tieres hingegen bleibt nur ein kleiner distaler Teil gebändert. Beide Augentypen besitzen eine unscheinbare, distal gelagerte achte Sehzelle. Diese zeigt rechtwinklig angeordnete Mikrovilli,die eine bislang unbekannte linsenförmige, kristallähnliche Struktur umgeben. Im Tag/Nacht-Rhythmus ablaufende Pigmentverschiebungen haben Veränderungen der Empfindlichkeit und des Auflösungsvermögens der Augen zur Folge. Axone der Retinulazellen eines Ommatidiums verlassen das Auge nicht als gemeinsames Bündel, sondern vereinigen sich nach einem regelmäßigen Muster mit denen von vier Nachbarommatidien.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, E. E.: Activity patterns and retinal pigment migration in Pagurus (Decapoda, Paguridae). Crustaceana 14, 302–306 (1968)Google Scholar
  2. Bäuerlein, R.: Morphophysiological studies on the visual system of the crab Potamon potamios rhodium Parisi (Deeapoda, Potamonidae). Forma et functio 1, 285–331 (1969)Google Scholar
  3. Bernhard, C. G.: The functional organization of the compound eye. Oxford: Pergamon Press 1966Google Scholar
  4. Bernhards, H.: Der Bau des Komplexauges von Astacus fluviatilis (Potamobius astacus L.). Z. wiss. Zool. 116, 649–707 (1916)Google Scholar
  5. Bouligand, Y.: Sur une architecture torsadée repondue dans de nombreuses cuticules d'arthropodes. C.R. Acad. Sci. (Paris) 261, 3665–3668 (1965)Google Scholar
  6. DeBruin, G. H. P., Crisp, D. J.: The influence of pigment migration on vision of higher Crustacea. J. exp. Biol. 34, 447–463 (1957)Google Scholar
  7. Burkhardt, D., Darnhofer-Demar, B., Fischer, K.: Zum binokularen Entfernungssehen der Insekten. J. comp. Physiol. 87, 165–188 (1973)Google Scholar
  8. Burtt, E. T., Catton, W. T.: Resolution of the locust eye measured by rotation of radial striped patterns. Proc. roy. Soc. B 173, 513–529 (1969)Google Scholar
  9. Burtt, E. T., Rafi, F.: Head movements of adult Schistocerca gregaria as a measure of visual acuity. Zool. Anz. (Jena), 192, 1–9 (1974)Google Scholar
  10. Carricaburu, P.: Contribution à la dioptrique oculaire des arthropodes. Soc. d'Hist. Nat. de l'Afrique du Nord (Alger) 9, 1–146 (1968)Google Scholar
  11. Eguehi, E., Waterman, T. H.: Fine structure patterns in crustacean rhabdoms. In: The functional organization of the compound eye. (C. G. Bernhard eds.), p. 105–124. Oxford: Pergamon Press 1966Google Scholar
  12. Eguchi, E., Waterman, T. H.: Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch. 79, 209–229 (1967)Google Scholar
  13. Eguchi, E., Waterman, T. H.: Cellular basis for polarized light perception in the spider crab, Libinia. Z. Zellforsch. 84, 87–101 (1968)Google Scholar
  14. Eguchi, E., Waterman, T. H.: Orthogonal microvillus pattern in the eighth rhabdomere of the Rock Crab Grapsus. Z. Zellforsch. 137, 145–157 (1973)Google Scholar
  15. Eguchi, E., Waterman, T. H., Akiyama, J.: Localization of the violet and yellow receptor cells in the crayfish retinula. J. gen. Physiol. 62, 355–374 (1973)Google Scholar
  16. Hafner, G. S.: The neural organization of the lamina ganglionaris in the crayfish: a Golgi and EM study. J. comp. Neurol. 152, 255–280 (1973)Google Scholar
  17. Horridge, G. A.: Optokinetic memory in the crab, Carcinus. J. exp. Biol. 44, 233–245 (1966)Google Scholar
  18. Horridge, G. A.: Perception of polarization plane, colour and movement in two dimensions by the crab, Carcinus. Z. vergl. Physiol. 55, 207–224 (1967)Google Scholar
  19. Horridge, G. A.: The compound eye and vision of insects. Oxford: Clarendon Press 1974Google Scholar
  20. Horridge, G. A., Walcott, B., Ioannides, A. C.: The tiered retina of Dytiscus: a new type of compound eye. Proc. roy. Soc. B 175, 83–94 (1970)Google Scholar
  21. Krebs, W.: The fine structure of the retinula of the compound eye of Astacus fluviatilis. Z. Zellforsch. 133, 399–414 (1972)Google Scholar
  22. Ludolph, C., Pagnanelli, D., Mote, M. I.: Neural control of migration of proximal screening pigment by retinular cells of the swimming crab Callinectes sapidus. Biol. Bull. 145, 159–170 (1973)Google Scholar
  23. Mazokhin-Porshnyakov, G. A.: Insect Vision. New York: Plenum Press 1969Google Scholar
  24. Meyer-Rochow, V. B.: Fixierung von Insektenorganen mit Hilfe eines Netzmittels — Das Dorsalauge der Eintagsfliege Atalophlebia costalis. Mikrokosmos 60, 348–352 (1971a)Google Scholar
  25. Meyer-Rochow, V. B.: A crustacean-like organization of insect rhabdoms. Cytobiol. 4, 241–249 (1971b)Google Scholar
  26. Meyer-Rochow, V. B.: The dioptric system of the eye of Cybister (Dytiscidae: Coleoptera). Proc. roy. Soc. B 183, 159–178 (1973)Google Scholar
  27. Meyer-Rochow, V. B.: The dioptric system in beetle compound eyes. In: The compound eye and vision of insects. (G. A. Horridge, ed.), p. 299–313. Oxford: Clarendon Press 1974Google Scholar
  28. Meyer-Rochow, V. B.: Axonal wiring and polarisation sensitivity in eye of the Rock Lobster. Nature (Lond.) 254, 522–523 (1975)Google Scholar
  29. Meyer-Rochow, V. B., Horridge, G. A.: The eye of Anoplognathus (Coleoptera, Scarabaeidae). Proc. roy. Soc. B 188, 1–30 (1975)Google Scholar
  30. Mote, M. I.: Polarization sensitivity. J. comp. Physiol. 90, 389–403 (1974)Google Scholar
  31. Parker, G. H.: The compound eyes in crustaceans. Bull. Mus. comp. Zool. Harvard 21, 45–140 (1891)Google Scholar
  32. Rutherford, D. J., Horridge, G. A.: The rhabdom of the lobster eye. Quart. J. micr. Sci. 106, 119–130 (1965)Google Scholar
  33. Schiff, H.: A discussion of light scattering in the Squilla rhabdom. Kybernetik 14, 127–134 (1974)Google Scholar
  34. Schöne, H.: Learning in the Spiny Lobster Panulirus argus. Biol. Bull. 121, 354–365 (1961)Google Scholar
  35. Shaw, S. R.: Sense-cell structures and interspecies comparisons of polarized-light absorption in arthropod compound eyes. Vision Res. 9, 1031–1040 (1969)Google Scholar
  36. Snyder, A. W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol. 83, 331–360 (1973)Google Scholar
  37. Struwe, G., Hallberg, E., Elofsson, R.: Physical and morphological properties of pigment screen in compound eye of a shrimp (crustacea). J. comp. Physiol. A 97 257–270 (1975)Google Scholar
  38. Tauber, U.: Analysis of polarized light passing rhabdomere. J. comp. Physiol. A 95, 169–184 (1974)Google Scholar
  39. Tunstall, J., Horridge, G. A.: Electrophysiological investigation of the optics of the locust retina. Z. vergl. Physiol. 55, 167–182 (1967)Google Scholar
  40. Walcott, B.: Unit studies on light-adaptation in the retina of the crayfish, Cherax destructor. J. comp. Physiol. 94, 207–218 (1974)Google Scholar
  41. Wehner, R.: Information processing in the visual system of arthropods. Berlin-Heidelberg-New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • V. B. Meyer-Rochow
    • 1
  1. 1.Department of ZoologyUniversity of Western AustraliaPerthAustralia

Personalised recommendations