Cell and Tissue Research

, Volume 149, Issue 1, pp 1–20 | Cite as

Early axonal changes following lesions of the dorsal columns in rats

  • B. C. Gilson
  • L. J. Stensaas


A graded series of changes occur around lesions to the central nervous system. In the present investigation three zones were distinguished caudal to a lesion of the dorsal columns in the rat, In Zone I near the lesion, necrosis and cellular disintegration are followed by phagocytosis, and the development of a loose connective tissue matrix. Here Schwann cells proliferate and envelope axon sprouts in a similar fashion to those in developing of regenerating peripheral nerve. Zone II includes the proximal segment of nervous tissue containing normal appearing axons in continuity with parent nerve cells. Here an initially severe edematous condition is followed by growth and proliferation of astrocytes. Axon sprouts are present in the transitional Boundary Zone the first day following a lesion. They continue to grow and are most numerous at one week. By two weeks axons have apparently disappeared from many parts of Zone I and degeneration of parent axons and retraction clubs is advanced in Zone II. The reasons for axon involution are not known but do not appear to be related to the development of a glial scar.

Key words

Axon sprouts Regeneration Dorsal column lesion Electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arteta, J. L.: Research on the regeneration of the spinal cord in the cat submitted to the action of pyrogenous substances (5 or 3895) of bacterial origin. J. comp. Neurol. 105, 171–184 (1956)Google Scholar
  2. Barnard, J. W., Carpenter, W.: Lack of regeneration in spinal cord of rat. J. Neurophysiol. 13, 223–228 (1950)Google Scholar
  3. Bernstein, J. J., Bernstein, M. E.: Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord. Exp. Neurol. 30, 336–351 (1971)Google Scholar
  4. Bielschowsky, M.: Über Ventraltender Achsencylinder in Geschwülsten des Nervensystems und in Kompressionsgebieten des Rückenmarkes. Z. Psych. Neurol. 7, 101 (1906)Google Scholar
  5. Brown, J. O., McCouch, G. P.: Abortive regeneration of transected spinal cord. J. comp. Neurol. 87, 131–137 (1947)Google Scholar
  6. Clemente, C. D.: Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol. 6, 257–301 (1964)Google Scholar
  7. Davidoff, L. M., Ransohoff, J.: Absence of spinal cord regeneration in the cat. J. Neurophysiol. 11, 9–11 (1948)Google Scholar
  8. Dohrmann, G. J., Wagner, F. C., Bucy, P. C.: Transitory traumatic paraplegia: electron microscopy of early alterations in myelinated nerve fibers. J. Neurosurg. 36, 407–415 (1972)Google Scholar
  9. Freeman, L. W.: Return of function after complete transection of the spinal cord of the rat, cat and dog. Ann. Surg. 136, 193–205 (1952)Google Scholar
  10. Gerard, R. W., Grinker, R. R.: Regenerative possibilities of the central nervous system. Arch. Neurol. Psychiat. 26, 469–484 (1931)Google Scholar
  11. Gerard, R. W., Koppanyi, T.: Studies on spinal cord regeneration in the rat. Amer. J. Physiol. 76, 211–212 (1926)Google Scholar
  12. Gilmore, S. A., Duncan, D.: On the presence of peripheral-like nervous and connective tissue within irradiated spinal cord. Anat. Rec. 160, 675–690 (1968)Google Scholar
  13. Gokay, H., Freeman, L. W.: Drugs and spinal cord regeneration. Quart. Bull. Indiana Univ. Med. Cent. 14, 67–69 (1952)Google Scholar
  14. Lampert, P., Cressman, M.: Axonal regeneration in the dorsal columns of the spinal cord of adult rats. An electron microscopic study. Lab. Invest. 13, 825–839 (1964)Google Scholar
  15. Lampert, P. W.: A comparative electron microscopic study of reactive degenerating, regenerating, and dystrophic axons. J. Neuropath. exp. Neurol. 26, 345–368 (1967)Google Scholar
  16. Lampert, P. W., Schochet, S. S.: Electron microscopic observations on experimental spongy degeneration of the cerebellar white matter. J. Neuropath. exp. Neurol. 27, 210–220 (1968)Google Scholar
  17. Liu, C. N., Scott, D.: Regeneration in the dorsal spinocerebellar tract of the cat. J. comp. Neurol. 109, 153–168 (1958)Google Scholar
  18. Matthews, M. A., Kruger, L.: Electron microscopy of non-neuronal cellular changes accompanying neural degeneration in thalamic nuclei of the rabbit. II. Reactive elements within the neuropil. J. comp. Neurol. 148, 313–346 (1973)Google Scholar
  19. Millonig, G.: Further observations on a phosphate buffer for osmium solutions in fixation. Int. Congr. Elec. Micr. 5, P-8 (1962)Google Scholar
  20. Mori, S., Leblond, C. P.: Identification of microglia in light and electron microscopy. J. comp. Neurol. 135, 57–80 (1969)Google Scholar
  21. Nathaniel, E. J. H., Pease, D. C.: Regenerative changes in rat dorsal roots following Wallerian degeneration. J. Ultrastruct. Res. 9, 533–549 (1963)Google Scholar
  22. Ramón y Cajal, S.: Degeneration and regeneration of the nervous system. R. M. May (trans.) vol. 2. London: Oxford University Press 1928Google Scholar
  23. Schlote, W.: Die läsionsbedingten primär-retrograden Veränderungen der Axone zentraler Nervenfasern im elektronenmikroskopischen Bild. Acta neuropath. (Basel) 4, 138–157 (1964)Google Scholar
  24. Scott, D., Jr., Clemente, C. D.: Regeneration of spinal cord fibers in the cat. J. comp. Neurol. 102, 633–669 (1955)Google Scholar
  25. Stensaas, L. J., Stensaas, S. S.: Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. II. Electron microscopy. Z. Zellforsch. 86, 184–213 (1968)Google Scholar
  26. Stroebe, H.: Experimentelle Untersuchungen über die degenerativen und reparatorischen Vorgänge bei der Heilung von Verletzungen des Rückenmarks nebst Bemerkungen zur Histogenese der secundären Degeneration im Rückenmark. Beitr. path. Anat. 15, 383 (1894)Google Scholar
  27. Sugar, O., Gerard, R. W.: Spinal cord regeneration in the rat. J. Neurophysiol. 3, 1–19 (1940)Google Scholar
  28. Torvik, A.: Phagocytosis of nerve cells during retrograde degeneration. An electron microscopic study. J. Neuropath. exp. Neurol. 31, 132–146 (1972)Google Scholar
  29. Von Lenhossek, M.: Der feinere Bau des Nervensystems im Lichte neuester Forschungen. Berlin: Fischers Medicin 1895Google Scholar
  30. Webster H., de F.: The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J. Cell Biol. 48, 348–367 (1971)Google Scholar
  31. Windle, W. F., Chambers, W. W.: Regeneration in the spinal cord of the cat and dog. J. comp. Neurol. 93, 241–258 (1950)Google Scholar
  32. Zelená, J., Lubinska, L., Gutmann, E.: Accumulation of organelles at the ends of interrupted axons. Z. Zellforsch. 91, 200–219 (1968)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • B. C. Gilson
    • 1
  • L. J. Stensaas
    • 1
  1. 1.Department of PhysiologyUniversity of Utah, College of MedicineSalt Lake City

Personalised recommendations