Climate Dynamics

, Volume 12, Issue 1, pp 37–52

A new snow parameterization for the Météo-France climate model

Part II: validation in a 3-D GCM experiment
  • H. Douville
  • J. -F. Royer
  • J. -F. Mahfouf


Both observational and numerical studies demonstrate the sensitivity of the atmosphere to variations in the extent and mass of snow cover. There is therefore a need for simple but realistic snow parameterizations in forecast and climate models. A new snow hydrology scheme has recently been developed at Météo-France for use in the ARPEGE climate model and has been successfully tested against local field measurements in stand-alone experiments. This study describes the global validation of the parameterization in a 3-year integration for the present-day climate within the T42L30 version of ARPEGE. Results are compared with those from a control simulation and with available observed climatologies, in order to assess the impact of the new snow parameterization on the simulated surface climate. The seasonal cycle of the Northern Hemisphere snow cover is clearly improved when using the new scheme. The snow pack is still slightly overestimated in winter, but its poleward retreat is better reproduced during the melting season. As a consequence, the modified GCM performs well in simulating the springtime continental heating, which may play a strong role in the simulation of the Asian summer monsoon.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–685CrossRefGoogle Scholar
  2. Blanford HF (1884) On the connexion of Himalayan snowfall and seasons of drought in India. Proc R See London 37:322Google Scholar
  3. Brand I, Noilhan J, Bessemoulin P, Mascart P, Haverkamp R, Vauclin M (1993) Bare-ground surface heat and water exchanges under dry conditions: observations and parameterization. Boundary Layer Meteorol 66:173–200Google Scholar
  4. Brun E, Martin E, Simon V, Gendre C, Coleou C (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J Glaciol 35:333–342Google Scholar
  5. Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22Google Scholar
  6. Cariolle D, Déqué M (1986) Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res — Atmos 91:10825–10846Google Scholar
  7. Cess RD, Potter GL, Zhang MH, Blanchet JP, Chalita S, Colman R, Dazlich DA, Del Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, Le Treut H, Liang XZ, Mahfouf JF, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Norris PM, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Scheinin DA, Slingo JM, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I (1991) Intercomparison of snow-feedback as produced by 17 general circulation models. Science 253:888–892Google Scholar
  8. Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res — Oceans 83:1889–1903Google Scholar
  9. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266Google Scholar
  10. Dewey KF (1977) Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon Weather Rev 105:1594–1598Google Scholar
  11. Dolman AJ, Gregory D (1992) The parametrization of rainfall interception in GCMs. Q J R Meteorol Soc 118:455–467Google Scholar
  12. Douville H (1994a) Validation de la climatologie de la neige simulée par la version 1 du modèle Arpège-Climat. Note de Centre GMGEC 31Google Scholar
  13. Douville H (1994b) Développement et validation locale d'une nouvelle paramétrisation du manteau neigeux. Note de Centre GMGEC 36Google Scholar
  14. Eagleson PS, Fennessey NM, Qinliang W, Rodriguez-Iturbe I (1987) Application of spatial Poisson models to air mass thunderstorm rainfall. J Geophys Res — Atmos 92:9661–9678Google Scholar
  15. Foster DJ Jr, Davy RD (1988) Global snow depth climatology, vol USAFETAC/TN - 88/006. USAF Environmental Technical Application Center, Scott Air Force Base, Illinois (Available from the National Climatic Data Center, Asheville, NC 28801)Google Scholar
  16. Foster JL, Chang ATC, Hall DK, Rango A (1991) Derivation of snow water equivalent in boreal forests using microwave radiometry. Arctic 44 (Supp I):147–152CrossRefGoogle Scholar
  17. Hahn DG, Shukla J (1976) An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J Atmos Sci 33:2461–2462CrossRefGoogle Scholar
  18. Ingram WJ, Wilson CA, Mitchell JFB (1989) Modelling climate change: an assessment of sea ice and surface albedo feedbacks. J Geophys Res 94:8609–8622Google Scholar
  19. Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127Google Scholar
  20. Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21Google Scholar
  21. Loth B, Graf HF, Oberhuber JM (1993) Snow cover model for global climate simulations. J Geophys Res — Atmos 98:10451–10464Google Scholar
  22. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol 17:187–202Google Scholar
  23. Mahfouf JF, Manzi AO, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J Climate 8:2039–2057Google Scholar
  24. Manabe S (1969) Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth's surface. Mon Weather Rev 97:739–774Google Scholar
  25. Manzi AO (1993) Introduction d'un schéma des transferts sol-végétation-atmosphère dans un modèle de circulation générale et application à la déforestation Amazonienne. Doctorat Thesis, Université Paul Sabatier, Toulouse (France)Google Scholar
  26. Manzi AO, Planton S (1994) Implementation of the ISBA parametrization scheme for land surface processes in a GCM — An annual cycle experiment. J Hydrol 155:353–387Google Scholar
  27. Marshall S, Oglesby RJ (1994) An improved snow hydrology for GCMs. I. Snow cover fraction, albedo, grain size, and age. Clim Dyn 10:21–37Google Scholar
  28. Meehl GA, Washington WM (1990) CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed-layer ocean model. Clim Change 16:2831–306Google Scholar
  29. Mintz Y, Serafini YV (1992) A global monthly climatology of soil moisture and water balance. Clim Dyn 8:13–28Google Scholar
  30. Namias J (1985) Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon Weather Rev 113:1542–1553Google Scholar
  31. Noilhan J, Lacarrère P (1995) GCM gridscale evaporation from mesoscale modelling. J Clim 8:206–223Google Scholar
  32. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549Google Scholar
  33. Noilhan J, Lacarrère P, Bougeault P (1991) An experiment with an advanced surface parameterization in a meso beta-scale model. Part III: comparison with the HAPEX-MOBILHY dataset. Mon Weather Rev 119:2393–2413Google Scholar
  34. Oglesby RJ (1990) Sensitivity of glaciation to initial snow cover, CO2 snow albedo, and oceanic roughness in the NCAR CCM. Clim Dyn 4:219–235Google Scholar
  35. Robinson DA, Kukla G (1984) Albedo of dissipating snow cover. J Clim Appl Meteorol 23:1626–1634Google Scholar
  36. Robinson D, Kunzi K, Kukla G, Rott H (1984) Comparative utility of microwave and shortwave satellite data for all-weather charting of snow cover. Nature 312:434–435Google Scholar
  37. Schutz C, Bregman LD (1987) Global annual snow accumulation by months. Rand Corporation, N-2551-AF (available from Rand Corporation, 1200 Main Street, Santa Monica, CA 90406)Google Scholar
  38. Vernekar AD, Zhou J, Shukla J (1995) The effect of Eurasian snow cover on the Indian monsoon. J Clim 8:248–266CrossRefGoogle Scholar
  39. Verseghy DL (1991) CLASS — a Canadian Land Surface Scheme for GCMS. I. Soil model. Int J Climatol 11:111–133Google Scholar
  40. Walsh JE, Tucek DR, Peterson MR (1982) Seasonal snow cover and short-term climatic fluctuations over the United States. Mon Weather Rev 110:1474–1485Google Scholar
  41. Webb RS, Rosenzweig CE, Levine ER (1991) A global data set of soil particle size properties, Tech Rep 4286 NASA, GISS, New YorkGoogle Scholar
  42. Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Climatol 5:119–143CrossRefGoogle Scholar
  43. Yasunari T, Kitoh A, Tokioka T (1991) Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate — a study with the MRI GCM. J Meteorol Soc Japan 69:473–487Google Scholar
  44. Yeh TC, Wetherald RT, Manabe S (1983) A model study of the short-term climatic and hydrologic effects of sudden snowcover removal. Mon Weather Rev 11:1013–1024Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • H. Douville
    • 1
  • J. -F. Royer
    • 1
  • J. -F. Mahfouf
    • 1
  1. 1.Météo-France/CNRMToulouse CedexFrance

Personalised recommendations