Climate Dynamics

, Volume 12, Issue 1, pp 21–35

A new snow parameterization for the Météo-France climate model

Part I: validation in stand-alone experiments
  • H. Douville
  • J. -F. Royer
  • J. -F. Mahfouf


Both observational studies and numerical experiments demonstrate the sensitivity of the atmosphere to variations in the extent and mass of snow cover. There is therefore a need for simple but realistic snow parameterizations in forecast and climate models. This study describes a new physically-based snow hydrology for use in the Météo-France climate model, together with the ISBA land-surface scheme. A restricted number of parameters has been added, while preserving a single surface energy budget. The ageing process of the snow pack has been introduced through prognostic equations for snow density and snow albedo. Snowmelt computation has been modified over partially snow-covered and vegetated areas. The new scheme has been validated against field measurements in stand-alone simulations forced by observed meteorological conditions. The results show a strong improvement in the model's performance, thereby suggesting that a simple one-layer snow model is able to reproduce the main physical mechanisms governing the snow pack evolution. Part II of the present study will concern the validation in a 3-D experiment within the Météo-France climate model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker DG, Ruschy DL, Wall DB (1990) The albedo decay of prairie snows. J Appl Meteorol 29:179–187Google Scholar
  2. Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–685CrossRefGoogle Scholar
  3. Barry R, Prévost M, Stein J, Plamondon A (1990) Application of a snow cover energy and mass balance model in a Balsam Fir forest. Water Resour Res 26:1079–1092Google Scholar
  4. Bernier P, Swanson R (1993) The influence of opening size on snow evaporation n the forests of the Alberta foothills. Can J Forest Res 23:239–244Google Scholar
  5. Blondin C (1988) Research on land surface parameterization schemes at ECMWF. In: Parameterization of fluxes over land surface. European Centre for Medium-Range Weather Forecasting, Shinfield Park, Reading RG2 9AX, UKGoogle Scholar
  6. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718CrossRefGoogle Scholar
  7. Brand I, Noilhan J, Bessemoulin P, Mascart P, Haverkamp R, Vauclin M (1993) Bare-ground surface heat and water exchanges under dry conditions: observations and parameterization. Boundary Layer Meteorol 66:173–200Google Scholar
  8. Brun E, Martin E, Simon V, Gendre C, Coleou C (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J Glaciol 35:333–342Google Scholar
  9. Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover statigraphy for operational avalanche forecasting. J Glaciol 38:13–22Google Scholar
  10. Calder IR (1990) Evaporation in the uplands. John Wiley, Chichester New YorkGoogle Scholar
  11. Cess RD, Potter GL, Zhang MH, Blanchet JP, Chalita S, Colman R, Dazlich DA, Del Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, Le Trent H, Liang XZ, Mahfouf JF, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Norris PM, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Scheinin DA, Slingo JM, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I (1991) Intercomparison of snow-feedback as produced by general circulation models. Science 253:888–892Google Scholar
  12. Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4:689–706Google Scholar
  13. Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res — Oceans 83:1889–1903Google Scholar
  14. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266CrossRefGoogle Scholar
  15. Dewey KF (1977) Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon Weather Rev 105:1594–1598Google Scholar
  16. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) NCAR Technical Note: Surface physics parameterization package for the NCAR Community Climate Model. National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  17. Douville H (1994a) Validation de la climatologie de la neige simulée par la version 1 du modèle Arpège-Climat. Note de Centre GMGEC 31Google Scholar
  18. Douville H (1994b) Ddveloppement et validation locale d'une nouvelle paramétrisation du manteau neigeux. Note de Centre GMGEC 36Google Scholar
  19. Gold LW (1958) Changes in a shallow snow cover subject to a temperate climate. J Glaciol 3:218–222Google Scholar
  20. Groisman PY, Karl TR, Knight RW (1994) Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263:198–200Google Scholar
  21. Gutzler DS, Rosen RD (1992) Interannual variability of wintertime snow cover across the Northern Hemisphere. J Clim 5:1441–1447Google Scholar
  22. Ingram WJ, Wilson CA, Mitchell JFB (1989) Modelling climate change: an assessment of sea ice and surface albedo feedbacks. J Geophys Res 94:8609–8622Google Scholar
  23. Iwasaki T (1991) Year-to-year variation of snow cover area in the northern hemisphere. J Meteorol Soc Japan 69:209–217Google Scholar
  24. Kondo J, Yamazaki T (1990) A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method. J Appl Meteorol 29:375–384Google Scholar
  25. Leonard RE, Eschner AR (1968) Albedo of intercepted snow. Water Resour Res 4:931–935Google Scholar
  26. Longley RW (1960) Snow depth and snow density at Resolute, Northwest Territories. J Glaciol 3:733–738Google Scholar
  27. Loth B, Graf HF, Oberhuber JM (1993) Snow cover model for global climate simulations. J Geophys Res-Atmos 98:10451–10464Google Scholar
  28. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol 17:187–202Google Scholar
  29. Lundberg A, Halldin S (1994) Evaporation of intercepted snow: analysis of governing factors. Water Resour Res 30:2587–2598Google Scholar
  30. Mahfouf JF, Manzi AO, Noilhan J, Giordani H, Deque M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J Climate 8:2039–2057Google Scholar
  31. Manabe S (1969) Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth's surface. Mon Weather Rev 97:739–774Google Scholar
  32. Manzi AO (1993) Introduction d'un schéma des transferts sol-végétation-atmosphère dans un modèle de circulation générale et application à la déforestation Amazonienne. Doctorat Thesis, Université Paul Sabatier, Toulouse (France)Google Scholar
  33. Manzi AO, Planton S (1994) Implementation of the ISBA parametrization scheme for land surface processes in a GCM — An annual cycle experiment. J Hydrol 155:353–387Google Scholar
  34. Meehl GA, Washington WM (1990) CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed-layer ocean model. Clim Change 16:283–306Google Scholar
  35. Namias J (1985) Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon Weather Rev 113:1542–1553Google Scholar
  36. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549Google Scholar
  37. Noilhan J, Lacarrere P (1995) GCM gridscale evaporation from mesoscale modelling. J Clim 8:206–223Google Scholar
  38. Noilhan J, Lacarrere P, Bougeault P (1991) An experiment with an advanced surface parameterization in a meso beta-scale model. Part III: comparison with the HAPEX-MOBILHY dataset. Mon Weather Rev 119:2393–2413Google Scholar
  39. Ohta T, Hashimoto T, Ishibashi H (1993) Energy budget comparison of snowmelt rates in a deciduous forest and an open site. Ann Glaciol 18:53–59Google Scholar
  40. Pitman AJ, Yang ZL, Cogley JC, Henderson-Sellers A (1991) Description of bare essentials of surface transfer for the Bureau of Meteorology Research Centre AGCM, BMRC Res Rep, vol 32. BMRC, Melbourne, AustraliaGoogle Scholar
  41. Robinson DA, Kukla G (1984) Albedo of dissipating snow cover. J Climate Appl Meteorol 23:1626–1634Google Scholar
  42. Robinson DA, Kukla G (1985) Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J Climate Appl Meteorol 24:402–411Google Scholar
  43. Robock A, Vinnikov KY, Schlosser CA, Speranskaya NA, Xue YK (1995) Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J Clim 8:15–35Google Scholar
  44. Satterlund D (1979) An improved equation for estimating longwave radiation from the atmosphere. Water Resour Res 15:2757–2782Google Scholar
  45. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531Google Scholar
  46. Staley DO, Jurica GM (1972) Effective atmospheric emissivity under clear skies. J Appl Meteorol 11:349–356Google Scholar
  47. Thomas G, Rowntree PR (1992) The boreal forests and climate. Q J R Meteorol Soc 118:469–497CrossRefGoogle Scholar
  48. Verseghy DL (1991) CLASS — a Canadian Land Surface Scheme for GCMS. 1. Soil model. Int J Climatol 11:111–133Google Scholar
  49. Verseghy DL, McFarlane NA, Lazare M (1993) CLASS — A Canadian land surface scheme for GCMS. 2. Vegetation model and coupled runs. Int J Climatol 13:347–370Google Scholar
  50. Vinnikov KY, Yeserkepova IB (1991) Soil moisture: empirical data and model results. J Clim 4:66–79Google Scholar
  51. Walsh JE, Tucek DR, Peterson MR (1982) Seasonal snow cover and short-term climatic fluctuations over the United States. Mon Weather Rev 110:1474–1485Google Scholar
  52. Walsh JE, Jasperson WH, Ross B (1985) Influences of snow cover and soil moisture on monthly air temperature. Mon Weather Rev 113:756–768Google Scholar
  53. Yamazaki T, Kondo J (1992) The snowmelt and heat balance in snow-covered forested areas. J Appl Meteorol 31:1322–1327Google Scholar
  54. Yasunari T, Kitoh A, Tokioka T (1991) Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate — a study with the MRI GCM. J Meteorol Soc Japan 69:473–487Google Scholar
  55. Yeh TC, Wetherald RT, Manabe S (1983) A model study of the short-term climatic and hydrologic effects of sudden snowcover removal. Mon Weather Rev 11:1013–1024Google Scholar
  56. Yen Y (1981) Review of thermal properties of snow, ice and seaice. CRREL Rep, 81-10Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • H. Douville
    • 1
  • J. -F. Royer
    • 1
  • J. -F. Mahfouf
    • 1
  1. 1.Météo-France/CNRMToulouse CedexFrance

Personalised recommendations