Journal of Paleolimnology

, Volume 4, Issue 1, pp 69–85 | Cite as

A palaeoecological test of the land-use hypothesis for recent lake acidification in South-West Norway using hill-top lakes

  • H. J. B. Birks
  • Frode Berge
  • J. F. Boyle
  • B. F. Cumming


Lakes perched on hill-tops have very small catchments. Their water chemistry is largely influenced by the chemical composition of precipitation and by the underlying bedrock geology. They are ideal sites for testing the hypothesis that land-use and associated soil changes are a major cause of recent lake acidification. On this hypothesis, hill-top lakes in SW Norway are predicted not to show any recent lake acidification because, by their very nature, the chemistry of such lakes is little influenced by land-use or soil changes.

Palaeolimnological analyses of diatoms and chrysophytes show that prior to ca. 1914 the two hill-top lakes investigated were naturally acid with reconstructed lake-pH values of at least 4.8–5.1. Since ca. 1914 lake pH values declined to ca. 4.5–4.7. These results contradict the land-use hypothesis. All the available palaeolimnological evidence (diatoms, chrysophytes, pollen, sediment geochemistry, carbonaceous particles) is consistent with the acid-deposition hypothesis.

In the absence of any evidence to support the land-use hypothesis as a primary cause of recent lake acidification and in the light of several independent refutations, it is perhaps time to put the land-use hypothesis for recent lake acidification to rest.

Key words

diatoms pollen chrysophytes heavy metals acidification land-use Norway pH changes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, B. I., 1985. Chemical composition of water across the sediment-water interface in the acidified Lake Gårdsjon, SW Sweden. Ecol. Bull. 37: 263–275.Google Scholar
  2. APHA, 1980. Standard methods for the examination of water and wastewater. American Public Heath Association; American Water Works Association; and Water Pollution Control Federation (14th edition), 1193 pp.Google Scholar
  3. Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.Google Scholar
  4. Appleby, P. G., P. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141: 21–27.Google Scholar
  5. Asmund, B. & J. Kristiansen, 1986. The genus Mallomonas (Chrysophyceae). A taxonomic survey based on the ultrastructure of silica scales and bristles. Opera Bot. 85: 1–128.Google Scholar
  6. Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. R. Soc. Lond. B: 305: 451–477.Google Scholar
  7. Battarbee, R. W., 1990. The causes of lake acidification, with special reference to the role of acid deposition. Phil. Trans. R. Soc. Lond. B. 327: 339–347.Google Scholar
  8. Battarbee, R. W. & D. F. Charles, 1987. The use of diatom assemblages in lake sediments as a means of assessing the timing, trends, and causes of lake acidification. Progr. Phys. Geogr. 11: 552–580.Google Scholar
  9. Battarbee, R. W., R. J. Flower, A. C. Stevenson & B. Rippey, 1985. Lake acidification in Galloway: a palaeoecological test of competing hypotheses. Nature 314: 350–352.Google Scholar
  10. Battarbee, R. W. & I. Renberg, 1988. Acid deposition and surface water acidification: the use of lake sediments. In Air Pollution and Ecosystems (Ed. P. Mathy), pp. 379–395. Dordrecht: Reidel.Google Scholar
  11. Battarbee, R. W. & 15 others, 1988. Lake acidification in the United Kingdom 1800–1986. Evidence from analysis of lake sediments. London: ENSIS Publishing.Google Scholar
  12. Battarbee, R. W., J. Mason, I. Renberg & J. F. Talling (eds.), 1990. Palaeolimnology and lake acidification. Phil. Trans. R. Soc. Lond. B. (327): 227–445.Google Scholar
  13. Belt, C. B., 1967. Partial analysis of silicate rocks by atomic absorption. Analyt. Chem. 39: 676–678.Google Scholar
  14. Berge, F., 1985. Relationships of diatom taxa to pH and other environmental factors in Norwegian soft-water lakes. Ph.D. thesis. University of Maine, 180 pp.Google Scholar
  15. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. R. Soc. Lond. B. 327: 263–278.Google Scholar
  16. Boyle, J. F., T. Smayda & H. J. B. Birks, 1989. The influence of catchment characteristics on the chemical composition of chronically acidified lakes in southern Norway. Botanisk Institutt, Universitetet i Bergen, Rapport 47, 32 pp.Google Scholar
  17. Charles, D. F., R. W. Battarbee, I. Renberg, H. van Dam & J. P. Smol, 1989. Paleoecological analysis of lake acidification trends in North America and Europe using diatoms and chrysophytes. In Acid Precipitation Volume 4. Soils, aquatic processes, and lake acidification (Ed. S. A. Norton, S. E. Lindberg & A. L. Page), pp. 207–276. New York: Springer Verlag.Google Scholar
  18. Corley, M. F. V. & M. O. Hill, 1981. Distribution of bryophytes in the British Isles. Cardiff: British Bryological Society.Google Scholar
  19. Cresser, M. & A. Edwards, 1987. Acidification of freshwaters. Cambridge: Cambridge University Press.Google Scholar
  20. Cumming, B. F., 1987. Mallomonadacean (Chrysophyceae) assemblages from Norway and their applicability to interpret patterns of recent lake acidification. Undergraduate thesis, Queen's University, Kingston, Ontario, 55 pp.Google Scholar
  21. Davis, R. B. & D. S. Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia 120: 69–87.Google Scholar
  22. Davis, R. B., D. S. Anderson & F. Berge, 1985. Palaeolimnological evidence that lake acidification is accompanied by loss of organic matter. Nature 316: 436–438.Google Scholar
  23. Davis, R. B. & F. Berge, 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments II. Diatom stratigraphy and inferred pH. In Ecological Impact of Acid Precipitation (Ed. D. Drabløs & A. Tollan), pp. 270–271. Oslo: SNSF Project.Google Scholar
  24. Davis, R. B., S. A. Norton, D. F. Brakke, F. Berge & C. T. Hess, 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments IV. Synthesis and comparison with New England. In Ecological Impact of Acid Precipitation (Ed. D. Drabløs & A. Tollan), pp. 274–275. Oslo: SNSF Project.Google Scholar
  25. Davis, R. B., S. A. Norton, C. T. Hess & D. F. Brakke, 1983. Paleolimnological reconstruction of the effects of atmospheric deposition of acids and heavy metals on the chemistry and biology of lakes in New England and Norway. Hydrobiologia 103: 113–123.Google Scholar
  26. Fægri, K. & J. Iversen, 1989. Textbook of pollen analysis (4th edition by K. Fægri, P. E. Kaland & K. Krzywinski). Chichester: J. Wiley & Sons.Google Scholar
  27. Galloway, J. N., J. D. Thornton, S. A. Norton, H. L. Volchok & R. A. N. McLean, 1982. Trace metals in atmospheric deposition: a review and assessment. Atmosph. Envir. 16: 1677–1700.Google Scholar
  28. Haila, Y. & O. Järvinen, 1982. The role of theoretical concepts in understanding the ecological theatre: a case study on island biogeography. In Conceptual Issues in Ecology (Ed. E. Saarinen), pp. 261–278. Dordrecht: Reidel.Google Scholar
  29. Henriksen, A., L. Lien, T. S. Traan, I. S. Sevaldrud & D. S. Brakke, 1988. Lake acidification in Norway—present and predicted chemical status. Ambio 17: 259–266.Google Scholar
  30. Jones, V. J., A. C. Stevenson & R. W. Battarbee, 1986. Lake acidification and the land-use hypothesis: a mid-post-glacial analogue. Nature 322: 157–158.Google Scholar
  31. Jones, V. J., A. C. Stevenson & R. W. Battarbee, 1989. Acidification of lakes in Galloway, south west Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. J. Ecol. 77: 1–23.Google Scholar
  32. Krug, E. C. & C. R. Frink, 1983. Acid rain on acid soils: a new perspective. Science 221: 520–525.Google Scholar
  33. Krug, E. C., P. J. Isaacson & C. R. Frink, 1985. Appraisal of some current hypotheses describing acidification of watersheds. J. Air Pollut. Contr. Ass. 35: 109–114.Google Scholar
  34. Lewontin, R., 1972. Testing the theory of natural selection. Nature 236: 181.Google Scholar
  35. Mason, J. & H. M. Seip, 1985. The current state of knowledge on acidification of surface waters and guidelines for future research. Ambio 14: 45–51.Google Scholar
  36. Norton, S. A., 1986. A review of the chemical record in lake sediments of energy related air pollution and its effects on lakes. Wat. Air Soil Pollut. 30: 331–345.Google Scholar
  37. Norton, S. A. & C. T. Hess, 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments I. Sediment dating and chemical stratigraphy. In Ecological Impact of Acid Precipitation (Ed. D. Drabløs & A. Tollan), pp. 268–269. Oslo: SNSF Project.Google Scholar
  38. Patrick, S. T., 1987. Palaeoecological evaluation of the recent acidification of Welsh lakes 5. The significance of land-use and land management change. Palaeoecology Research Unit, University College, London, Working Paper 21, 47 pp.Google Scholar
  39. Pennington, W., 1984. Long-term natural acidification of upland sites in Cumbria: evidence from post-glacial lake sediments. Rep. Fresh-wat. Biol. Ass. 52: 28–46.Google Scholar
  40. Popper, K., 1963. Conjectures and refutations: the growth of scientific knowledge. New York: Harper & Row.Google Scholar
  41. Renberg, I., 1985. Influence of acidification on the sediment chemistry of Lake Gårdsjön, SW Sweden. Ecol. Bull. 37: 246–250.Google Scholar
  42. Renberg, I. & J-E. Wallin, 1985. The history of the acidification of Lake Gårdsjön as deduced from diatoms and Sphagnum leaves in the sediment. Ecol. Bull. 37: 47–52.Google Scholar
  43. Renberg, I. & J-E. Wallin, 1985. The history of the acidification of Lake Gårdsjön as deduced from diatoms and Sphagnum leaves in the sediment. Ecol. Bull. 37: 47–52.Google Scholar
  44. Renberg, I. & M. Wik, 1985a. Carbonaceous particles in lake sediments—pollutants from fossil fuel combustion. Ambio 14: 161–163.Google Scholar
  45. Renberg, I. & M. Wik, 1985b. Soot particle counting in recent lake sediments. An indirect dating method. Ecol. Bull. 37: 53–57.Google Scholar
  46. Rosenqvist, I. Th., 1978a. Alternative sources for acidification of river water in Norway. Sci. Tot. Envir. 10: 39–49.Google Scholar
  47. Rosenqvist, I. Th., 1978b. Acid precipitation and other possible sources for acidification of rivers and lakes. Sci. Tot. Envir. 10: 271–272.Google Scholar
  48. Rosenqvist, I. Th., 1980. Influence of forest and agriculture on the acidity of fresh water. In Advances in Environmental Science and Engineering 3 (Ed. J. R. Pfallin & N. Ziegler), pp. 56–79. New York: Gordon & Breach.Google Scholar
  49. Rosenqvist, I. Th., 1989. From rain to lake. Water pathways and chemical changes. European Geophysical Society XIV General Assembly, Barcelona, 13–17 March 1989, 13 pp.Google Scholar
  50. Rosenqvist, I. Th., P. Jørgensen & H. Ruelåtten, 1980. The importance of natural H+ production for acidity in soil water. In Ecological Impact of Acid Precipitation (ed. D. Drabløs & A. Tollan), pp. 240–241. Oslo: SNSF Project.Google Scholar
  51. Rühling, Å. & G. Tyler, 1984. Recent changes in the deposition of heavy metals in northern Europe. Wat. Air Soil Pollut. 22: 173–185.Google Scholar
  52. Salt, G. W., 1983. Roles: their limits and responsibilities in ecological and evolutionary research. Am. Nat. 122: 697–705.Google Scholar
  53. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984a. Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (N.Y.) lakes. Can. J. Bot. 62: 911–923.Google Scholar
  54. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984b. Mallomonadacean microfossils provide evidence of recent lake acidification. Nature 307: 628–630.Google Scholar
  55. Stevenson, A. C., S. T. Patrick, A. Kreiser & R. W. Battarbee, 1987. Palaeoecological evaluation of the recent acidification of susceptible lakes: Methods utilized under DoE contract PECD 7/7/139 and the Royal Society SWAP project. Palaeoecology Research Unit, University College London, Research Paper 26, 36 pp.Google Scholar
  56. Takahashi, E., 1978. Electron microscopical studies of the Synuraceae (Chrysophyceae) in Japan. Tokai University Press, Tokyo, 104 pp.Google Scholar
  57. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  58. ter Braak, C. J.F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  59. Wee, J. L., 1982. Studies on the Synuraceae (Chrysophyceae) of Iowa. Bibl. Phycol. 62: 1–183.Google Scholar
  60. Wik, M., I. Renberg & J. Darley, 1986. Sedimentary records of carbonaceous particles from fossil fuel combustion. Hydrobiologia 143: 387–394.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • H. J. B. Birks
    • 1
  • Frode Berge
    • 1
    • 2
  • J. F. Boyle
    • 1
  • B. F. Cumming
    • 3
  1. 1.Botanical InstituteUniversity of BergenBergenNorway
  2. 2.ValdresNorway
  3. 3.Department of BiologyQueen's UniversityKingstonCanada

Personalised recommendations