Planta

, Volume 184, Issue 1, pp 105–112 | Cite as

Changes of cytoplasmic free Ca2+ in the green alga Mougeotia scalaris as monitored with indo-1, and their effect on the velocity of chloroplast movements

  • U. Russ
  • F. Grolig
  • G. Wagner
Article

Abstract

The fluorescent calcium-sensitive dye 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2′-amino-5′-methylphenoxy)-ethane-N,N,N′,N′-tetraacetic acid (indo-1) was loaded by a transplasmalemma pH gradient into filamentous cells and protoplasts of Mougeotia scalaris, such that most of the indo-1 fluorescence originated from the cytoplasm. Incubation of M. scalaris filaments in ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA)-buffered media (-log [Ca2+] (=pCa) 8 versus pCa 3) caused a consistent and significant decrease in the cytoplasmic free [Ca2+]. Pulses of the fluorescence excitation light (UV-A 365 nm, 0.7 s) caused an increase in cytoplasmic free [Ca2+] in M. scalaris that was nearly independent of the external [Ca2+] and of chloroplast dislocation by centrifugation. This calcium flux, highest in UV-A light, compared with blue or red light, probably resulted from a release of Ca2+ from intracellular stores. Increased cytoplasmic [Ca2+] may affect the velocity of chloroplast rotation since UV-A-light-mediated chloroplast movement was faster than in blue or red light. Consistently, the calcium ionophore A23187 and the calcium-channel agonist Bay-K8644 both increased the velocity of the red-light-mediated chloroplast rotation. Based on these and other observations, a Ca2+-induced decrease in cytoplasmic viscosity in Mougeotia is presumed to occur.

Key words

Calcium (cytoplasmic free) Chloroplast movement Dye, calcium sensitive (Indo-1) Light (blue, ultraviolet A) Mougeotia 

Abbreviations

EGTA

ethylene glycol-bis-(β-aminoethyl ether)N,N,N′,N′-tetraacetic acid

indo-1

1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2′-amino-5′-methylphenoxy)-ethane-N,N,N′,N′tetraacetic acid

pCa

log [Ca2+]

Pfr

far-red-absorbing form of phytochrome

Pr

red-absorbing form of phytochrome

xG

geometric mean

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkelman, T., Lagarias, J.C. (1990) Calcium transport in the green alga Mesotaenium caldariorum — Preliminary characterization and subcellular distribution. Plant Physiol. 93, 748–757Google Scholar
  2. Brownlee, C., Wood, J.W. (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells of Fucus serratus. Nature 320, 624–626Google Scholar
  3. Bush, D.S., Jones, R.L. (1987) Measurement of cytoplasmic calcium in aleurone protoplasts using Indo-1 and Fura-2. Cell Calcium 8, 455–472Google Scholar
  4. Bush, D.S., Jones, R.L. (1990) Measuring intracellular Ca2+ levels in plant cells using the fluorescent probes, Indo-1 and Fura-2 progress and prospects. Plant Physiol. 93, 841–845Google Scholar
  5. Cork, R.J., Strautman, A.F., Robinson, K.R. (1989) Measuring cytoplasmic calcium: a review of three methods with emphasis on the practical aspects of their use. Biol. Bull. 176, Suppl., 25–30Google Scholar
  6. Dorée, M., Picard, A. (1980) Release of Ca2+ from intracellular pools stops cytoplasmic streaming in Tradescantia staminal hairs. Experientia 36, 1291–1292Google Scholar
  7. Felle, H. (1988) Cytoplasmic free calcium in Riccia fluitans L. and Zea mays L.: Interaction of Ca2+ and pH? Planta 176, 248–255Google Scholar
  8. Felle, H. (1989) a2+-selective microelectrodes and their application to plant cells and tissues. Plant Physiol. 91, 1239–1242Google Scholar
  9. Foos, K. (1970) Mikrotubuli bei Mougeotia spec. Z. Pflanzenphysiol. 62, 201–203Google Scholar
  10. Galway, M.E., Hardham, A.R. (1986) Microtubule reorganization, cell wall synthesis and establishment of the axis of elongation in regenerating protoplasts of the alga Mougeotia. Protoplasma 135, 130–143Google Scholar
  11. Gilroy, S., Hughes, W.A., Trewavas, A.J. (1989) A comparison between Quin-2 and Aequorin as indicators of cytoplasmic calcium levels in higher plant cell protoplasts. Plant Physiol. 90, 482–491Google Scholar
  12. Grolig, F., Wagner, G. (1987) Vital staining permits isolation of calcium vesicles from the green alga Mougeotia. Planta 171, 433–437Google Scholar
  13. Grolig, F., Wagner, G. (1988) Light-dependent chloroplast reorientation in Mougeotia and Mesotaenium: Biased by pigmentregulated plasmalemma anchorage sites to actin filaments? Bot. Acta 101, 2–6Google Scholar
  14. Grolig, F., Wagner, G. (1989) Characterization of the isolated calcium-binding vesicles from the green alga Mougeotia scalaris, and their relevance to chloroplast movement. Planta 177, 169–177Google Scholar
  15. Grynkiewicz, G., Poenie, M., Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450Google Scholar
  16. Haupt, W. (1970) Hellrotund Dunkelrot-Wechselwirkungen bei der Chloroplastendrehung von Mougeotia. Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math. Naturwiss. Reihe 19, 47–54Google Scholar
  17. Haupt, W. (1982) Light-mediated movement of chloroplasts. Annu. Rev. Plant Physiol. 33, 205–233Google Scholar
  18. Haupt, W. (1987) Phytochrome control of intracellular movement. In: Phytochrome and photoregulation in plants, pp. 225–237, Furuya, M., ed. Academic Press, LondonGoogle Scholar
  19. Haupt, W., Trump, K. (1975) Licht-orientierte Chloroplastenbewegung bei Mougeotia: Die Größe des Phytochromgradienten steuert die Bewegungsgeschwindigkeit. Biochem. Physiol. Pflanz. 168, 131–140Google Scholar
  20. Hepler, P.K., Wayne, R.O. (1985) Calcium and plant development. Annu. Rev. Plant Physiol. 36, 397–439Google Scholar
  21. Kakimoto, T., Shibaoka, H. (1986) Calcium-sensitivity of cortical microtubules in the green alga Mougeotia. Plant Cell Physiol. 27, 91–101Google Scholar
  22. Kauss, H. (1987) Some aspects of calcium-dependent regulation in plant metabolism. Annu. Rev. Plant Physiol. 38, 47–72Google Scholar
  23. Kraml, M., Büttner, G., Haupt, W., Herrmann, H. (1988) Chloroplast orientation in Mesotaenium: the phytochrome effect is strongly potentiated by interaction with blue light. Protoplasma Suppl. 1, 172–179Google Scholar
  24. Kuroda, R., Hatano, S., Hiramoto, Y., Kuroda, H. (1988) Change of cytosolic Ca-ion concentration in the contraction and relaxation cycle of Physarum microplasmodia. Protoplasma Suppl. 1, 72–80Google Scholar
  25. Martell, A.E., Smith, R.M. (1974) Critical stability constants. Plenum Press, New YorkGoogle Scholar
  26. Minta, A., Kao, J.P.Y., Tsien, R.Y. (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromatophores. J. Biol. Chem. 264, 8171–8178Google Scholar
  27. Neuscheler-Wirth, H. (1970) Wachstumsgeschwindigkeit und Wachstumsrhythmik bei Mougeotia. Z. Pflanzenphysiol. 63, 352–369Google Scholar
  28. Owen, C.S., Shuler, R.L. (1989) Spectral evidence for non-calcium interactions of intracellular Indo-1. Biochem. Biophys. Res. Commun. 163, 328–333Google Scholar
  29. Popov, E.G., Gavrilov, I.Y., Pozin, E.Y., Gabbasov, Z.A. (1988) Multiwavelength method for measuring concentration of free cytosolic calcium using the fluorescent probe indo-1. Arch. Biochem. Biophys. 261, 91–96Google Scholar
  30. Quader, H. (1990) Formation and disintegration of cisternae of the endoplasmic reticulum visualised in live cells by conventional fluorescence and confocal laser scanning microscopy: evidence for the involvement of calcium and the cytoskeleton. Protoplasma 155, 166–175Google Scholar
  31. Roberts, D.M. (1989) Detection of a calcium-activated protein kinase in Mougeotia by using synthetic peptide substrates. Plant Physiol. 91, 1613–1619Google Scholar
  32. Russ, U., Grolig, F., Wagner, G. (1988) Differentially absorbed vital dyes inhibit chloroplast movement in Mougeotia scalaris. Protoplasma Suppl. 1, 180–184Google Scholar
  33. Schönbohm, E. (1987) Movement of Mougeotia chloroplasts under continuous weak and strong light. Acta Physiol. Plant 9, 109–135Google Scholar
  34. Schönbohm, E., Hellwig, H. (1979) Zum Photorezeptorproblem der Schwachlichtbewegung des Mougeotia-Chloroplasten im Blau bzw. Hellrot bei niedrigen Temperaturen. Ber. Dtsch. Bot. Ges. 92, 749–762Google Scholar
  35. Serlin, B.S., Ferrell, S. (1989) The involvement of microtubules in chloroplast rotation in the alga Mougeotia. Plant Sci. 60, 1–8Google Scholar
  36. Stabenau, H. (1978) Wachstum von Mougeotia in der Durchlüftungskultur. Ber. Dtsch. Bot. Ges. 91, 251–255Google Scholar
  37. Stern, M.D., Spurgeon, H.A., Hansford, R., Lakatta, E.G., Capogrossi, M.C. (1989) Optimum spectral windows to minimize quantum noise of ratiometric intracellular fluorescent probes. Cell Calcium 10, 527–534Google Scholar
  38. Tretyn, A., Kendrick, R.E., Bossen, M.E. (1990) The effect of a calcium-channel antagonist, nifedipin and agonist, Bay K-8644, on the phytochrome-controlled swelling of etiolated wheat protoplasts. Physiol. Plant. 78, 230–235Google Scholar
  39. Wagner, G., Grolig, F., Altmüller, D. (1987) Transduction chain of low irradiance response of chloroplast reorientation in Mougeotia in blue or red light. Photobiochem. Photobiophys. Suppl., 183–189Google Scholar
  40. Wagner, G., Valentin, P., Dieter, P., Marmé, D. (1984) Identification of calmodulin in the green alga Mougeotia and its possible function in chloroplast reorientational movement. Planta 162, 62–67Google Scholar
  41. Weisenseel, M. (1968) Vergleichende Untersuchungen zum Einfluß der Temperatur auf lichtinduzierte Chloroplastenverlagerungen. Z. Pflanzenpysiol. 59, 56–69 and 153–171Google Scholar
  42. Williamson, R.E. (1984) Calcium and the plant cytoskeleton. Plant Cell Environ. 7, 431–440Google Scholar
  43. Williamson, R.E., Ashley, C.C. (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296, 647–651Google Scholar
  44. Zhang, D.H., Callaham, D.A., Hepler, P.K. (1990) Regulation of anaphase chromosome motion in Tradescantia stamen hair cells by calcium and related signaling agents. J. Cell Biql. 111, 171–182Google Scholar
  45. Zurzycki, J. (1955) Chloroplast arrangement as a factor in photosynthesis. Acta Soc. Bot. Pol. 24, 27–63Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • U. Russ
    • 1
  • F. Grolig
    • 1
  • G. Wagner
    • 1
  1. 1.Membranund Bewegungsphysiologie, Botanisches Institut 1Justus-Liebig-UniversitätGiessenGermany

Personalised recommendations