Advertisement

Applied Microbiology and Biotechnology

, Volume 36, Issue 3, pp 421–424 | Cite as

Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate

  • Els Moyson
  • Hubert Verachtert
Environmental Biotechnology

Summary

The influence of the growth of three higher fungi on the composition of wheat straw was investigated. Pleurotus pulmonarius, P. sajor-caju and Lentinus edodes grew very well on lignocellulosic substrates, breaking down a considerable amount of lignin. The initial lignin concentration of straw was halved after 12 weeks of fungal growth, doubling the enzymic digestibility. Together with lignin, the higher fungi consumed half of the amount of hemicellulose (i.e. 15%), leaving cellulose fairly intact, which should remain as an energy source for ruminants.

Keywords

Cellulose Lignin Energy Source Straw Hemicellulose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agosin E, Rouau X, Brillouet JM (1987) Fermentation of wheat straw xylan by the white-rot fungus Dichomitus squalens. Can J Microbiol 33:1050–1054Google Scholar
  2. Christian KR (1971) Detergent method for total lignin in herbage. Field Station Records, Division of Plant Industry CSIRO 10:29–34Google Scholar
  3. Cottyn BG, De Boever JL (1988) Upgrading of straw by ammoniation. Anim Feed Sci Technol 21:287–294 (special edition: Greenhalgh JFD (ed), Elsevier Science Publishers, BV Amsterdam)Google Scholar
  4. Dare PH, Clark TA, Chu-Chou M (1988) Consumption of substrate components by the cultivated mushroom Lentinus edodes during growth and fruiting on softwood and hardwood-based media. Process Biochem 23:156–160Google Scholar
  5. De Boever JL, De Brabander DL, Buysse FX (1989) Het gebruik van een enzymatische methode voor het schatten van de verteerbaarheid en energiewaarde van voedermiddelen voor melkvee. Mededelingen van het Studiecentrum Melkveehouderij (IWONL) RVV 793Google Scholar
  6. Detroy RW, Lindenfelser LA, St Julian G Jr, Orton WL (1980) Saccharification of wheat straw cellulose by enzymatic hydrolysis following fermentative and chemical pretreatment. Biotechnol Bioeng Symp 10:135–148Google Scholar
  7. Fukuzumi T (1989) Biological degradation of lignin. In: Kitani O, Hall CW (eds) Biomass handbook. Gordon and Breach Science Publishers, New York, p 325Google Scholar
  8. Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. ACS Symp Ser 389:127–140Google Scholar
  9. Gujral GS, Bisaria R, Madan M, Vasudevan P (1987) Solid state fermentation of Saccharum munja residues into food through Pleurotus cultivation. J Ferment Technol 65:101–105Google Scholar
  10. Han YW, Yu PL, Smith SK (1978) Alkali treatment and fermentation of straw for animal feed. Biotechnol Bioeng 20:1015–1026Google Scholar
  11. Kirk TK, Shimada M (1985) Lignin biodegradation: The microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, New York, p 579Google Scholar
  12. Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two woodrotting fungi. Appl Environ Microbiol 32:192–194Google Scholar
  13. Kirkpatrick N, Reid ID, Ziomek E, Ho C, Paice MG (1989) Relationship between fungal biomass production and the brightening of hardwood kraft pulp by Coriolus versicolor. Appl Environ Microbiol 55:1147–1152Google Scholar
  14. Moyson E, De Smet K, Verachtert H (1991) Biodegradation of wheat straw by higher fungi. In: Verachtert H, Verstraete W (eds) International Symposium on Environmental Biotechnology, Ostend, Belgium, 22–25 April 1990. Royal Flemish Society of Engineers, Antwerp, p 539Google Scholar
  15. Müller HW, Trösch W (1986) Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl Microbiol Biotechnol 24:180–185Google Scholar
  16. Pilon L, Barbe MC, Desrochers M, Jurasek L (1982) Fungal treatment of mechanical pulps. Its effect on paper properties. Biotechnol Bioeng 24:2063–2076Google Scholar
  17. Schoemaker HE, Leisola MSA (1990) Degradation of lignin by Phanerochaete chrysosporium. J Biotechnol 13:101–109Google Scholar
  18. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46:829–835Google Scholar
  19. Yang HH, Effland MJ, Kirk TK (1980) Factors influencing fungal degradation of lignin in a representative lignocellulosic, thermomechanical pulp. Biotechnol Bioeng 22:65–77Google Scholar
  20. Zadrazil F, Brunnert H (1980) The influence of ammonium nitrate supplementation on degradation and in vitro digestibility of straw colonized by higher fungi. Eur J Appl Microbiol Biotechnol 9:37–44Google Scholar
  21. Zadrazil F, Grinbergs J, Gonzalez A (1982) “Palo potrido” — decomposed wood used as feed. Eur J Appl Microbiol Biotechnol 15:167–171Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Els Moyson
    • 1
  • Hubert Verachtert
    • 1
  1. 1.Faculty of AgricultureCatholic University of LeuvenLeuvenBelgium

Personalised recommendations