Human Genetics

, Volume 89, Issue 1, pp 18–22 | Cite as

Dual fluorescent in situ hybridisation for simultaneous detection of X and Y chromosome-specific probes for the sexing of human preimplantation embryonic nuclei

  • Darren K. Griffin
  • Leeanda J. Wilton
  • Alan H. Handvside
  • Robert M. L. Winston
  • Joy D. A. Delhanty
Original Investigations


Dual fluorescent in situ hybridisation has been used for the simultaneous detection of X and Y chromosome-specific probes in single cleavage nuclei from disaggregated 4- to 7-cell human embryos. Based on the presence of a Y signal or 2 X signals in the absence of a Y, 89% of poor quality metaphases and 72% of interphase nuclei could be classified as male or female. With further refinements, this technique will offer a credible alternative to the polymerase chain reaction for the diagnosis of sex in human preimplantation embryos in families segregating for X-linked genetic disease.


Polymerase Chain Reaction Internal Medicine Metabolic Disease Genetic Disease Poor Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cooke HJ, Schmidtke J, Gosden JR (1982) Characterisation of a human Y chromosome repeated sequence and related sequences in higher primates. Chromsoma 87:491–502Google Scholar
  2. Cremer T, Landegent J, Bruckner A, Scholl HP, Schardin M, Hager HD, Devillee P, Pearson P, Ploeg M van der (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L 1.84. Hum Genet 76:346–352Google Scholar
  3. Gosden JR, Gosden CM, Christie S, Cooke HJ, Morsman JM, Rodeck CH (1984) The use of cloned Y chromosome-specific DNA probes for fetal sex determination in first trimester prenatal diagnosis. Hum Genet 66:347–351Google Scholar
  4. Griffin DK, Handyside AH, Penketh RJA, Wintson RML, Delhanty JDA (1991) Fluorescent in-situ hybridisation to interphase nuclei of human preimplantation embryos with X and Y chromosome specific probes. Hum Reprod 6:101–105Google Scholar
  5. Grifo JA, Boyle A, Fischer E, Lavy G, DeCherney AH, Ward DC, Sanyal MK (1990) Pre-embryo biopsy and analysis of blastomeres by in situ hybridisation. Am J Obstet Gynecol 163:2013–2019Google Scholar
  6. Handyside AH (1991) Preimplantation diagnosis by DNA amplification. In: Chapman M, Grudzinskas G, Chard T, Maxwell D (eds) The embryo: normal development and growth. Springer London Berlin Heidelberg New York, pp 81–90Google Scholar
  7. Handyside AH, Pattinson JK, Penketh RJA, Delhanty JDA, Winston RML, Tuddenham EGD (1989) Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet 1:347–349Google Scholar
  8. Handyside AH, Kontogianni EH, Hardy K, Winston RML (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344:768–770Google Scholar
  9. Hardy K, Martin KL, Leese HJ, Winston RML, Handyside AH (1990) Human preimplantation development in vitro is not adversely affected by biopsy at the 8-cell stage. Hum Reprod 5:708–714Google Scholar
  10. Heiles HBJ, Genersch E, Kessler C, Neumann R, Eggers HJ (1988) In situ hybridisation with digoxigenin labelled DNA of human papilloma viruses (HPV 16/18) in HeLa and SiHa cells. Biotechniques 6:978–981Google Scholar
  11. Jones KW, Singh L, Edwards RG (1987) The use of probes for the Y chromosomes in preimplantation embryo cells. Hum Reprod 2:439–445Google Scholar
  12. Kola I, Wilton LJ (1991) Preimplantation embryo biopsy: detection of trisomy in a single cell biopsied from a four-cell mouse embryo. Mol Reprod Dev 29:16–21Google Scholar
  13. Kontogianni EH, Hardy K, Handyside AH (1991) Co-amplification of X- and Y-specific sequences for sexing preimplantation human embryos. In: Verlinsky Y, Strom C (eds) Proceedings of the First Symposium on Preimplantation Genetics. Plenum Press, New York, pp 139–145Google Scholar
  14. Penketh RJA, Delhanty JDA, Berghe JA van den, Finkelstone EM, Handyside AH, Malcolm S, Winston RML (1989) Rapid sexing of human embryos by non-radioactive in situ hybridization: potential for preimplantation diagnosis of X-linked disorders. Prenat Diagn 9:489–500Google Scholar
  15. Pinkel D, Straume T, Gray JM (1986) Cytogenetic analysis using quantitative high sensitivity, fluorescent hybridization. Proc Natl Acad Sci USA 83:2934–2938Google Scholar
  16. Quinn P, Barro C, Whittingham DG (1982) Preservation of hamster oocytes to assay the fertilising capacity of human spermatozoa. J Reprod Fertil 66:161–168Google Scholar
  17. West JD, Gosden JR, Angell RR, Hastie ND, Thatcher SS, Glasier AF, Baird DT (1987) Sexing the human pre-embryo by DNA-DNA in situ hybridisation. Lancet 1:1345–1347Google Scholar
  18. West JD, Gosden JR, Angell RR, West KM, Glasier AF, Thatcher SS, Baird DT (1988) Sexing whole human pre-embryos by in situ hybridisation with a Y-chromosome specific DNA probe. Hum Reprod 3:1010–1019Google Scholar
  19. Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37:524–532Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Darren K. Griffin
    • 1
  • Leeanda J. Wilton
    • 2
  • Alan H. Handvside
    • 3
  • Robert M. L. Winston
    • 3
  • Joy D. A. Delhanty
    • 1
  1. 1.Galton Laboratory, Department of Genetics and BiometryUniversity College London, Wolfson HouseLondonUK
  2. 2.Institute of Zoology, Zoological Society of LondonLondonUK
  3. 3.Institute of Obstetrics and Gynaecology, Royal Postgraduate Medical School, Hammersmith HospitalLondonUK

Personalised recommendations