Cell and Tissue Research

, Volume 228, Issue 1, pp 139–148 | Cite as

The pineal organ of Raja clavata: Opsin immunoreactivity and ultrastructure

  • I. Vigh-Teichmann
  • B. Vigh
  • M. J. Manzano e Silva
  • B. Aros


The pineal organ of Raja clavata was studied by light and electron microscopy, including the immunocytochemical antiopsin reaction. The pineal organ of the ray consists of three portions: (i) a large proximal pineal, (ii) a long tube-like connecting stalk, and (iii) a short distal terminal enlargement. This latter end-vesicle lies in the deep connective tissue layers of the braincase. All portions of the pineal are composed of pinealocytes, intrinsic neurons, ependymal/glial cells, and bundles of nerve fibers embedded in thin neuropil formations. The inner segments of the pinealocytes protrude into the lumen in all parts of the organ and usually contain basal bodies and numerous mitochondria. Often, two outer segments were found to arise from the basal bodies of a single inner segment. By means of light-microscopic immunocytochemistry the outer segments showed a strong antiopsin reaction.

The axons of the pinealocytes form ribbon-containing synapses on dendritelike profiles, which appear to belong to the intrinsic pineal neurons. There are other axo-dendritic synapses established by presynaptic terminals lacking ribbons and containing granular and synaptic vesicles. Pineal neurons may contain granular vesicles approximately 60–100 nm in diameter; their processes contribute to the bundles of unmyelinated axons.

The fine structural organization of the pineal organ and the opsin immunoreactivity of the outer segments of the pinealocytes indicate a photoreceptive capacity of the organ. The double outer segments represent a peculiar multiplication of the photoreceptor structures.

Key words

Pineal organ Pineal photoreceptors Opsin immunoreactivity Electron microscopy Elasmobranch (Raja clavata


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altner H (1965) Histologische und histochemische Untersuchungen an der Epiphyse von Haien. Progr Brain Res 10:154–171Google Scholar
  2. Hamasaki DI, Streck P (1971) Properties of the epiphysis cerebri of the small-spotted dogfish shark, Scyliorhinus canicula L. Vision Res 11:189–198Google Scholar
  3. Hartwig HG (1980) The structure of the pineal gland. In: Epple A, Stetson MH (eds) Avian endocrinology. Academic Press, New York London Toronto, pp 33–51Google Scholar
  4. Hartwig HG, Baumann C (1974) Evidence of photosensitive pigments in the pineal complex of the frog. Vision Res 14:597–598Google Scholar
  5. Liebman PA (1972) Microspectrophotometry of photoreceptors. In: Dartnall HJA (ed) The Handbook of Sensory Physiology, VII/1. Springer, Berlin Heidelberg New York, pp 481–528Google Scholar
  6. Loew ER, Lythgoe JN (1978) The ecology of cone pigments in teleost fishes. Vision Res 18:715–722Google Scholar
  7. Meissl H, Dodt E (1981) Comparative physiology of pineal photoreceptor organs. In: Oksche A, Pévet P (eds) The pineal organ. Photobiology — Biochronometry —Endocrinology. Developments in endocrinology 14:61–80Google Scholar
  8. Oksche A (1965) Survey of the development and comparative morphology of the pineal organ. Progr Brain Res 10:3–29Google Scholar
  9. Oksche A, Hartwig HG (1982) Personal communication; in preparationGoogle Scholar
  10. Rüdeberg C (1968) Receptor cells in the pineal organ of the dogfish, Scyliorhinus canicula Linné. Z. Zellforsch 85:521–526Google Scholar
  11. Rüdeberg C (1969a) Structure of the parapineal organ of the adult rainbow trout, Salmo gairdneri Richardson. Z Zellforsch 93:282–304Google Scholar
  12. Rüdeberg C (1969b) Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula L. Z Zellforsch 96:548–581Google Scholar
  13. Tsin ATC, Liebman PA, Beatty DD, Drzymaka R (1981) Rod and cone visual pigment in the goldfish. Vision Res 21:943–946Google Scholar
  14. Ueck M, Kobayashi H (1979) Neue Ergebnisse zu Fragen der vergleichenden Epiphysenforschung. Verh Anat Ges 73:961–963Google Scholar
  15. Vigh B, Vigh-Teichmann I (1981) Light-and electron-microscopic demonstration of immunoreactive opsin in the pinealocytes of various vertebrates. Cell Tissue Res 221:451–463Google Scholar
  16. Vigh B, Vigh-Teichmann I, Röhlich P, Aros B (1982) Immunoreactive opsin in the pineal organ of reptiles and birds. Z mikr-anat Forsch 96:113–129Google Scholar
  17. Vigh-Teichmann I, Röhlich P, Vigh B, Aros B (1980b) Comparison of the pineal complex, retina and cerebrospinal fluid contacting neurons by immunocytochemical antirhodopsin reaction. Z mikranat Forsch 94:623–640Google Scholar
  18. Vigh-Teichmann I, Vigh B, Röhlich P, Olsson R (1980a) Phylogenetic aspects of the sensory neurons of the wall of the diencephalon. In: Spatz M, Mrsulja BB, Rakic LjM, Lust WD (eds) Circulatory and developmental aspects of brain metabolism. Plenum Press, New York, pp 415–428Google Scholar
  19. Vigh-Teichmann I, Korf HW, Oksche A, Vigh B (1982a) Opsin-immunoreactive outer segments and acetylcholinesterase positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell Tissue Res 227:351–370Google Scholar
  20. Vigh-Teichmann I, Korf HW, Nürnberger F, Oksche A, Vigh B (1982b) Comparative immunocytochemical studies of pineal photoreceptors and CSF-contacting neurons. Verh Anat Ges 77: in pressGoogle Scholar
  21. Vigh-Teichmann I, Korf HW, Nürnberger F, Oksche A, Vigh B, Olsson R (1982c) in preparationGoogle Scholar
  22. Vigh-Teichmann I, Vigh B, Aros B, Jennes L, Sikora K, Kovács J (1979) Scanning and transmission electron microscopy of intraventricular dendrite terminals of hypothalamic cerebrospinal fluid contacting neurons in Triturus vulgaris. Z mikr-anat Forsch 93:609–642Google Scholar
  23. Vollrath L (1981) The pineal organ. In: Handbuch der mikroskopischen Anatomie des Menschen, Bd 6, Teil 7, Oksche A, Vollrath L (eds). Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • I. Vigh-Teichmann
    • 1
    • 2
  • B. Vigh
    • 1
    • 2
  • M. J. Manzano e Silva
    • 1
    • 2
  • B. Aros
    • 1
    • 2
  1. 1.Department of Anatomy and CytobiologyJustus Liebig UniversityGiessenFederal Republic of Germany
  2. 2.Second Department of Anatomy, Histology and EmbryologySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations