Applied Microbiology and Biotechnology

, Volume 39, Issue 4–5, pp 433–437 | Cite as

Optimized nikkomycin production by fed-batch and continuous fermentation

  • Traugott C. Schüz
  • Hans-Peter Fiedler
  • Hans Zähner


We performed fed-batch and continuous fermentations to extend the time of maximal nikkomycin production by Streptomyces tendae Tü 901/S 2566. This was achieved by the fed-batch culture technique. Furthermore, high productivity was obtained at slow growth rates in a continuous fermentation process. Different dilution rates with and without carbon limitation were done and the results were compared.


Growth Rate Fermentation Streptomyces Slow Growth Fermentation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker JM, Covert NL, Shengbagamurthi P, Steinfeld AS, Naider F (1983) Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrob Agents Chemother 23:926–929Google Scholar
  2. Birch A, Häusler A, Hütter R (1990) Genome rearrangement and genetic instability in Streptomyces spp. J Bacteriol 172:4138–4142Google Scholar
  3. Bormann C, Huhn W, Zähner H, Rathmann R, Hahn H, König WA (1985) Metabolic products of microorganisms. 228. New nikkomycins produced by mutants of Streptomyces tendae. J Antibiot 38:9–16Google Scholar
  4. Bu'lock JD, Powell AJ (1965) Secondary metabolism: an explanation in terms of induced enzyme metabolism. Experientia 21:55–56Google Scholar
  5. Bu'lock JD, Detroy RW, Hostalek Z, Munim-al-shakarchi A (1974) Regulation of secondary biosynthesis in Gibberella fujikuroi. Trans Br Mycol Soc 62:377–389Google Scholar
  6. Crüger W, Frommer W, Goelker C, Kaiser JW, Moeschler HF, Salcher O, Schedel M, Wehlmann H (1985) Neue Pflanzenschutzwirkstoffe aus Mikroorganismen. Pflanzenschutznachr Bayer 38:305–348Google Scholar
  7. Dähn U, Hagenmaier H, Höhne H, König WA, Wolf G, Zähner H (1976) Stoffwechselprodukte von Mikroorganismen 154. Mitteilung. Nikkomycin, ein neuer Hemmstoff der Chitinsynthese bei Pilzen. Arch Mikrobiol 107:143–160Google Scholar
  8. Decker H, Zähner H, Heitsch H, König WA, Fiedler HP (1991) Structure-activity relationships of the nikkomycins. J Gen Microbiol 137:1805–1813Google Scholar
  9. Dehler W (1979) Nikkomycine — Studien zur Fermentation und Isolierung. Dissertation, University of TübingenGoogle Scholar
  10. Delzer J, Fiedler HP, Müller H, Zähner H, Rathmann R, Ernst K, König WA (1984) New nikkomycins by mutasynthesis and directed fermentation. J Antibiot 37:80–82Google Scholar
  11. Fiedler HP (1984) Screening for new microbial products by high-performance liquid chromatography using photodiode array detector. J Chromatogr 316:487–494Google Scholar
  12. Fiedder HP, Kurth R, Langhärig J, Delzer J, Zähner H (1982) Nikkomycins: microbial inhibitors of chitin synthase. J Chem Technol Biotechnol 32:271–280Google Scholar
  13. Hector R, Zimmer BL, Pappagianis D (1990) Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 34:587–593Google Scholar
  14. Herbert D, Phibbs JP, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5B. Academic Press, London, pp 209–344Google Scholar
  15. Hohenwallner W, Wimmer E (1973) The malachite green micromethod for determination of inorganic phosphate. Clin Chim Acta 45:169–175Google Scholar
  16. Itaya K, Ui M (1966) A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta 14:361–366Google Scholar
  17. Kurth R (1981) Untersuchungen zur Regulation der Nikkomycinbildung und Optimierung einer pO2-Feeding-Fermentation. Dissertation, University of TübingenGoogle Scholar
  18. Lilley G, Clark AE, Lawrence GC (1981) Control of the production of cephamycin C and thienamycin by Streptomyces cattleya NRRL 8057. J Chem Technol Biotechnol 31:127–134Google Scholar
  19. Lohr D, Buschulte T, Gilles ED (1989) Continuous cultivation of Streptomyces tendae in different media. Appl Microbiol Biotechnol 32:274–279Google Scholar
  20. Matteo CC, Cooney CL, Demain AL (1976) Production of gramicidin S synthetases by Bacillus brevis in continuous culture. J Gen Microbiol 96:415–422Google Scholar
  21. Plaga A, Stümpfel J, Fiedler HP (1989) Determination of carbohydrates in fermentation processes by high performance liquid chromatography. Appl Microbiol Biotechnol 32:45–49Google Scholar
  22. Roth M, Noack D (1982) Genetic stability of differentiated functions i in Streptomyces hygroscopicus in relation to conditions of continuous culture. J Gen Microbiol 128:107–114Google Scholar
  23. Schüz TC (1990) Pelletbildung bei Streptomyces tendae Tü 901/S 2566 und verfahrenstechnische Optimierung der Nikkomycin-Fermentation. Dissertation, University of TübingenGoogle Scholar
  24. Schüz TC, Fiedler HP, Zähner H, Rieck M, König WA (1992) Metabolic products of microorganisms. 263. Nikkomycin Sz,Sx,Soz and Sox, new intermediates associated to the nikkomycin biosynthesis of Streptomyces tendae. J Antibiiot 45:199–206Google Scholar
  25. Veelken M, Pape H (1984) Production of nikkomycin by immobilized Streptomyces cells — physiological properties. Appl Microbiol Biotechnol 19:146–152Google Scholar
  26. Walz F (1986) Studien zur Fermentation neuer Nikkomycine mit freien und immobilisierten Zellen. Dissertation, University of TübingenGoogle Scholar
  27. Zoebelein G, Kniehase U (1985) Labor-, Gewächshaus- und Freilandversuche zur Wirkung von Nikkomycin gegen Insekten und Milben. Pflanzenschutznachr Bayer 38:203–304Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Traugott C. Schüz
    • 1
  • Hans-Peter Fiedler
    • 1
  • Hans Zähner
    • 1
  1. 1.Biologisches Institut, LB Mikrobiologie/AntibiotikaUniversität TübingenTübingenGermany

Personalised recommendations