Journal of Comparative Physiology A

, Volume 166, Issue 3, pp 345–353 | Cite as

Vibrational communication in the fiddler crab, Uca pugilator

I. Signal transmission through the substratum
  • Bernhard Aicher
  • Jürgen Tautz
Article

Summary

  1. 1.

    During courtship behavior, males of the fiddler crab, Uca pugilator, drum on the ground with their large chela. The types of waves this produces and some of their properties were investigated using a laser Doppler vibrometer and accelerometers under field and laboratory conditions.

     
  2. 2.

    Rhythmical impact onto the substratum by Uca produces 3 types of surface waves: Rayleigh waves and Love waves which contain most of the energy, and the weaker surface P-waves.

     
  3. 3.

    The group velocity of Love-waves is 50–60 m/s in wet sand. Rayleigh waves travel at 70–80 m/s in wet sand and obout 40 m/s in dry sand. The propagation velocity of surface P-waves is 150–160 m/s in compact wet sand and about 140 m/s in wet sand perforated by crab burrows. The group velocity of Rayleigh and Love waves is not influenced by the presence of crab burrows.

     
  4. 4.

    Fast Fourier transform (FFT) spectra of single beats reveal that the energy maxima of Rayleigh and Love waves lie in the frequency range of 340–370 Hz, i.e., at much higher frequencies than the beat rate of the fiddler crabs, which is usually below 40/s. The optimal frequency is independent of the distance from the signalling male.

     
  5. 5.

    In the optimal frequency range, the specific damping coefficient α10 for Rayleigh waves is very low and amounts to 0.13–0.16 dB/cm in wet sand and 0.23–0.49 dB/cm in dry sand. Substrate vibrations of higher frequencies are more strongly damped.

     
  6. 6.

    Considering the size of a fiddler crab, the physical properties of the Rayleigh and Love waves in the optimal frequency range provide a suitable signal for localizing mechanisms which rely on time or phase differences but not on intensity or spectral differences of propagating substrate vibrations.

     

Key words

Vibration Communication Signal transmission Fiddler crab 

Abbreviation

LDV

laser Doppler vibrometer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach JD (1973) Wave propagation in elastic solids. In: Lauwerier HA, Koiter WT (eds) Applied mathematics and mechanics vol 16. North-Holland Publ, Amsterdam LondonGoogle Scholar
  2. Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by Laser Doppler vibrometry. J Comp Physiol 150:483–491Google Scholar
  3. Aki K, Richards PG (1980) Quantitative seismology. Theory and methods. Vol I & II. Freeman, San FranciscoGoogle Scholar
  4. Altevogt R (1957) Vibration als semantisches Mittel bei Crustaceen. Wiss Z Karl-Marx-Univ Leipzig, Math-Nat Reihe 15:471–476Google Scholar
  5. Altevogt R (1959) Ökologische und ethologische Studien an Europas einziger Winterkrabbe Uca tangeri Eydoux. Z Morphol Ökol Tiere 48:123–146Google Scholar
  6. Altevogt R (1970) Form and Funktion der vibratorischen Signale von Uca tangeri und Uca inaequalis (Crustacea, Ocypodidae). Forma et Functio 2:178–187Google Scholar
  7. Attenborough K (1982) Acoustic characteristics of porous materials. Physics Reports 82:179–227Google Scholar
  8. Barth FG (1982) Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication. Princeton Univ Press, Princeton, pp 67–122Google Scholar
  9. Barth FG (1986) Vibrationssinn und vibratorische Umwelt von Spinnen. Naturwissenschaften 73:519–530Google Scholar
  10. Born WT (1941) The attenuation constant of earth materials. Geophysics 6:132–148Google Scholar
  11. Brownell PH (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479–482Google Scholar
  12. Buchave P (1975) Laser Doppler vibration measurements using variable frequency shift. DISA Inf 18:15–20Google Scholar
  13. Christy JH (1980) The mating system of the sand fiddler crab, Uca pugilator. PhD Thesis, Cornell UniversityGoogle Scholar
  14. Crane J (1975) Fiddler crabs of the world. Ocypodidae: Genus Uca. Princeton Univ Press, PrincetonGoogle Scholar
  15. Elliot SE, Wiley BF (1975) Compressional velocities of partially unconsolidated sands. Geophysics 40:949–954Google Scholar
  16. Ewing WM, Jardetzky WS, Press F (1957) Elastic waves in layered media. McGraw-Hill, New York Toronto LondonGoogle Scholar
  17. Förtsch O (1950) Untersuchungen von Biegewellen in Platten. Messung ihrer Gruppen- und Phasengeschwindigkeit. Gerl Beitr Geophys 61:272–290Google Scholar
  18. Graff KF (1975) Wave motion in elastic solids. Clarendon Press, OxfordGoogle Scholar
  19. Hagen HO von (1962) Freilandstudien zur Sexual- und Fortpflanzungsbiologie von Uca tangeri in Andalusien. Z Morphol Ökol Tiere 51:611–725Google Scholar
  20. Hagen HO von (1985) Visual and acoustic display in Uca mordox and U. burgersi, sibling species of neotropical fiddler crabs. II. Vibration signals. Behaviour 85:204–228Google Scholar
  21. Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. J Mech Found Div, Proc Am Soc Civil Engineers SM1 3407:33–65Google Scholar
  22. Heinze J (1984) FFT Digital-Analysatoren. VFI 17:53–58Google Scholar
  23. Iida K (1938) The velocity of elastic waves in sand. Bull Earthq Res Inst Tokio 16:131–145Google Scholar
  24. Iida K (1939) Velocity of elastic waves in granular substances. Bull Earthq Res Inst Tokio 17:783–808Google Scholar
  25. Ishimoto M, Iida K (1936) Determinations of elastic constants of soil by means of vibration methods. Part I. Young's modulus. Bull Earthq Res Inst Tokio 14:632–657Google Scholar
  26. Ishimoto M, Iida K (1937) Determinations of elastic constants of soil by means of vibration methods. Part II. Modulus of rigidity and Poisson's ratio. Bull Earthq Res Inst Tokio 15:67–87Google Scholar
  27. Kolsky H (1963) Stress waves in solids. Dover Publ, New YorkGoogle Scholar
  28. Markl H (1968) Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. II. Erzeugung und Eigenschaften der Signale. Z Vergl Physiol 60:103–150Google Scholar
  29. Markl H (1969) Verständigung durch Vibrationssignale bei Arthropoden. Naturwissenschaften 56:499–505Google Scholar
  30. Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 332–353Google Scholar
  31. Markl H (1985) Manipulation modulation, information, cognition: some of the riddles of communication. In: Hölldobler B, Lindauer M (eds) Fortschr Zool 31:163–194Google Scholar
  32. Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203Google Scholar
  33. Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 321–331Google Scholar
  34. Ramspeck A, Schulze GA (1938) Die Dispersion elastischer Wellen im Boden. Veröff Inst Deutsch Forschungsges Bodenmechanik (Degebo) Techn Hochsch Berlin 6:1–28Google Scholar
  35. Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466Google Scholar
  36. Salmon M, Horch KW (1972) Acoustic signalling and detection by semi-terrestrial crabs of the family Ocypodidae. In: Winn HE, Olla BL (eds) Behavior of marine animals, vol I, Invertebrates. Plenum Press, New York, pp 60–96Google Scholar
  37. Sommerfeld A (1970) Vorlesungen über theoretische Physik II. Mechanik der deformierbaren Medien. Akad Verlagsges, LeipzigGoogle Scholar
  38. White JE (1965) Seismic waves — radiation, transmission, and attenuation. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Bernhard Aicher
    • 1
  • Jürgen Tautz
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations