Mineralium Deposita

, Volume 21, Issue 1, pp 22–34 | Cite as

Sulfide composition and phase relations in the Fe-Ni-Cu ore deposits of the Ivrea-Verbano basic complex (western Alps, Italy)

  • G. Garuti
  • P. Fiandri
  • A. Rossi


The bulk composition, mineralogy and mineral chemistry of base-metal sulfides have been investigated in the Fe-Ni-(Cu) ore deposits of the Ivrea-Verbano basic complex.

The sulfide ores mostly display textural evidence of having been primarily deposited as an immiscible melt. Bulk compositions of the ores indicate that considerably low Ni/Fe and Ni/Co ratios are found in deposits developed close to metasedimentary country rocks, possibly as a result of mixing with sedimentary sulfur.

Phase relations of primary sulfides indicate that early crystallization of the ore was dominated by a monosulfide solid solution (Mss) with a pyrrhotite composition, from which pentlandite and chalcopyrite were formed through subsolidus exsolution. Pentlandite from contaminated ores is typically enriched in Co. Troilite and hexagonal intermediate pyrrhotite intergrowths frequently occur due to low-temperature equilibration of metal-rich pyrrhotites, suggesting a low S fugacity of the original sulfide melt.

The sulfides may be locally mobilized and redeposited along shear zones within the same host rock, giving rise to fairly massive ores having a typical cemented-breccia texture. Bulk composition and assemblages suggest that mobilization occurred at various temperatures during the cooling history of the ore, when sulfides were still in the molten state or at a lower temperature under the influence of abundant deuteric fluids. In this last case, growth of pyrite is seen as being possibly due to sulfurization and/or oxidation.


Sulfide Pyrite Shear Zone Bulk Composition Cooling History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, R.G.: Pyrrhotite phase relations below 304.6 °C at 1 atm. total pressure. Econ. Geol. 64:405–419 (1969)Google Scholar
  2. Arnold, R.G., Reichen, L.E.: Measurement of the metal content of naturally occurring metal-deficient, hexagonal pyrrhotite by an X-ray spacing method. Am. Mineral. 47:105–111 (1962)Google Scholar
  3. Bertolani, M.: Studio microscopico a luce riflessa sui minerali dei giacimenti cupro-nicheliferi della Val Sesia. Rend. SIMP, 8:67–86 (1952)Google Scholar
  4. Bertolani, M.: Le manifestazioni metallifere della Val Strona (Novara). Atti Soc. Nat. Mat. Modena, 95:3–22 (1964)Google Scholar
  5. Bigioggero, B., Brigo, L., Ferrario, A., Gregnanin, A., Montrasio, A., Zuffardi, P.: Strona Valley (Fe-Ni-Cu) and (Fe-Ba) ore deposits: Excursion book. Mem. Ist. Geol. Min. Univ. Padova, 33:33–39 (1979)Google Scholar
  6. Buchnan, D., Nolan, J.: Solubility of sulfur and sulfide immiscibility in synthetic tholeitic melts and their relevance to Bushveld-complex rocks. Can. Mineral. 17:483–494 (1979)Google Scholar
  7. Campbell, I.H., Naldrett, A.J.: The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Econ. Geol. 74:1503–1506 (1979)Google Scholar
  8. Craig, J.R.: Pyrite-pentlandite assemblages and other low temperature relations in the Fe-Ni-S system. Am. Jour. Sc., 273-A:496–510 (1973)Google Scholar
  9. Craig, J.R., Naldrett, A.J., Kullerud, G.: Succession of mineral assemblages in pyrrhotite-rich Ni-Cu ores. Carnegie Inst. Washington, Year Book 67:431–434 (1967)Google Scholar
  10. Desborough, G.A., Carpenter, R.H.: Phase relations of pyrrhotite. Econ. Geol. 60:1431–1450 (1965)Google Scholar
  11. Durazzo, A., Taylor, L.A.: Exsolution in the Mss-pentlandite system: textural and genetic implications for Ni-sulfide ores. Mineral. Deposita 17:313–332 (1982)Google Scholar
  12. Ferrario, A., Garuti, G., Sighinolfi, G.P.: Platinum and palladium in the Ivrea-Verbano basic complex, Western Alps, Italy. Econ. Geol. 77:1548–1555 (1982)Google Scholar
  13. Ferrario, A., Garuti, G., Rossi, A., Sighinolfi, G.P.: Petrographic and metallogenic outlines of the “La Balma-M. Capio” Ultramafic-Mafic Body (Ivrea-Verbano Basic Complex, NW Italian Alps). Mineral Deposits of the Alps and of the Alpine Epoch in Europe, H.J. Schneider, Ed., pp 28–40. Berlin-Heidelberg: Springer (1983)Google Scholar
  14. Garuti, G., Rinaldi, R.: Mineralogy of melonite-group PGM and other tellurides from Ivrea-Verbano basic complex, Western Italian Alps. Fourth International Platinum Symposium, Abstracts, Can. Mineral. 23:303 (1985)Google Scholar
  15. Hawley, J.E.: The Sudbury ores: their mineralogy and origin. Can. Mineral. 7:1–207 (1962)Google Scholar
  16. Heilmann, H., Lensch, G.: Sulfur isotope investigation of sulfides and rocks from the main basic series of the Ivrea-Zone. Schweizer Min. Petr. Mitt. 57:445–456 (1977)Google Scholar
  17. Hunziker, J.C., Zingg, A.: Lower Paleozoic amphibolite- to granulite-facies metamorphism in the Ivrea zone (Southern Alps, Northern Italy). Schweizer Min. Petr. Mitt. 60:181–213 (1980)Google Scholar
  18. Hüttenlocher, F.: Die Erzlagerstättenzonen der Westalpen. Schweizer Min. Petr. Mitt. 14:22–149 (1934)Google Scholar
  19. Irvine, T.N.: Crystallization sequence in the Muscox Intrusion and other layered intrusions. II. Origin of chromite layers and similar deposits of other magmatic ores. Geochim. Cosmochim. Acta 39:991–1020 (1975)Google Scholar
  20. Kissin, S.A., Scott, S.D.: Phase relations involving pyrrhotite below 350 °C. Econ. Geol. 77:1739–1754 (1982)Google Scholar
  21. Kullerud, G.: Phase relations in the Fe-S-O system. Carnegie Inst. Washington, Year Book 56:198–200 (1957)Google Scholar
  22. Misra, K.C., Fleet, M.E.: The Chemical Compositions of synthetic and natural pentlandite assemblages. Econ. Geol. 68:518–539 (1973)Google Scholar
  23. Naldret, A.J.: A portion of the system Fe-S-O between 900° and 1080 °C and its application to sulfide ore magmas. Jour Petrology 10:171–201 (1969)Google Scholar
  24. Naldrett, A.J., Craig, J.R., Kullerud, G.: The central portion of the Fe-Ni-S system and its bearing on pentlandite exsolution in iron-nickel sulfide ores. Econ. Geol. 62:826–847 (1967)Google Scholar
  25. Omenetto, P., Brigo, L.: Metallogenesi nel quadro dell'orogene ercinico delle Alpi (con particolare riguardo al versante italiano). Mem. Soc. Geol. It. 13:1–24 (1974)Google Scholar
  26. Rivalenti, G., Garuti, G., Rossi, A.: The origin of the Ivrea-Verbano basic formation (Western Italian Alps). Whole rock geochemistry. Boll. Soc. Geol. It. 94:1149–1186 (1975)Google Scholar
  27. Rivalenti, G., Garuti, G., Rossi, A., Siena, F., Sinigoi, S.: Existence of different peridotite types and of a layered igneous complex, Western Alps, Italy. Jour. Petrology 22:127–153 (1980)Google Scholar
  28. Rivalenti, G., Rossi, A., Siena, F., Sinigoi, S.: The Layered Series of the Ivrea-Verbano Igneous Complex, Western Alps, Italy. TMPM, 33:77–99 (1984)Google Scholar
  29. Suardi, M.: I risultati della ricerca geomineraria nella zona Ivrea-Verbano (Piemonte). Relazione RIMIN s.p.a. — Ministero Ind. Comm. Artig., Div. Gen. Miniere. L'industria mineraria, 2:1–14 (1983)Google Scholar
  30. Vaasjoki, O., Hakli, T.A., Tontti, M.: The effect of cobalt on the thermal stability of pentlandite. Econ. Geol. 69:549–551 (1974)Google Scholar
  31. Yund, R.A., Kullerud, G.: Thermal stability of assemblages in the Cu-Fe-S system. Jour. Petrology 7:454–488 (1966)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. Garuti
    • 1
  • P. Fiandri
    • 1
  • A. Rossi
    • 1
  1. 1.Istituto di Mineralogia e Petrologia dell' Università di ModenaModenaItaly

Personalised recommendations