, Volume 5, Issue 3, pp 125–135 | Cite as

Function of spiral grain in trees

  • Hans Kubler
Review Article


Through spiral grain, conduits for sap lead from each root to all branches. This uniform distribution of sap is indicated by the paths of vessels and tracheids, and has been proven experimentally by means of dyed sap injected into the base of stems or taken up by roots. Trees receiving water only from roots at one side of the root collar nevertheless stay green and continue growing. Spiral grain in bark distributes food from each branch to other flanks of the stem and to most roots. Experimental interruptions of the sap and food conduits caused the cambial zone to reorient new conduit cells in new directions, bypassing the interruption. In particular, spiral grooves cut into the stem surface caused spiral grain. The new cells reorient through division and growth. Although spiral grain is largely under genetic control, trees appear to have a spiral grain especially where needed for distribution of water when root spheres are dry at one side. Compared with straight-grained trees, spiral-grained stems and branches bend and twist more when exposed to strong wind, in this way offering less wind resistance and being less likely to break. Through the bending and twisting, snow slides down from branches rather than breaking them, but the main function of spiral grain is the uniform distribution of supplies from each root to all branches, and from each branch to many roots.

Key words

Transport Strength Fiber deviations Cambial growth Reorientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloni R, Peterson CA (1990) The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182: 583–590Google Scholar
  2. Archer RR (1987) Growth stresses and strains in trees. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. Banks CH (1953) Spiral grain and its effect on the strength of South African grown pines. J S Afr For Assoc 23: 45–50Google Scholar
  4. Banks CH (1969) Spiral grain and its effect on the quality of South African timber. Bosbou For 10: 27–33Google Scholar
  5. Baumert P (1925) Knick- und Drehwuchs zum Zwecke der Zerlegung der Windkraft in Teilkräfte. Mitt Dtsch Dendrol Ges 35: 132–138Google Scholar
  6. Birot Y, Arbez M, Azoeuf P, Hoslin R (1979) Variabilité phénotypique de l'angle du fil du bois en fonction de la hauteur chez le Pin laricio et le Douglas. Ann Sci For 36: 165–173Google Scholar
  7. Bormann FH (1966) The structure, function, and ecological significance of root grafts in Pinus strobus L. Ecol Monogr 36: 1–26Google Scholar
  8. Braun A (1854) Über den schiefen Verlauf der Holzfasern und die dadurch bedingte Drehung der Bäume. Königlich Preussische Akad Wiss, Berlin, Monatsber 1854: 432–484Google Scholar
  9. Brown CL, Sax K (1962) The influence of pressure on the differentiation of secondary tissues. Am J Bot 49: 683–691Google Scholar
  10. Burger H (1946) Der Drehwuchs bei Birn- und Apfelbäumen. Schweiz Z Forstwes 97: 119–125Google Scholar
  11. Cahn AR (1931) Twisted trees. Science 73: 561Google Scholar
  12. Cown DJ, McConchie DL, Young GD (1983) Wood properties of Pinus caribaea var. hondurensis grown in Fiji. N Z For Serv Bull 17Google Scholar
  13. Collins JF (1930) On changing the direction of sap conducting tissues. J N Engl Bot Club 32: 145–146Google Scholar
  14. Elliott GK (1958) Spiral grain in second-growth Douglas-fir and western hemlock. For Prod J 8: 205–211Google Scholar
  15. Elliott GK (1967) Some problems of spiral grain — with special reference to conifers. Proc 14th Congr IUFRO, Munich 1967 Pt IX, Sect 22/41, pp413–435Google Scholar
  16. Evert RF (1961) Some aspects of cambial development in Pyrus communis. Am J Bot 48: 479–488Google Scholar
  17. Evert RF (1990) Dicotyledons. In: Behnke HD, Sjolund RD (eds) Sieve elements — comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 103–137Google Scholar
  18. Evert RF, Kozlowski TT (1967) Effect of isolation of bark on cambial activity and development of xylem and phloem in trembling aspen. Am J Bot 54: 1045–1054Google Scholar
  19. Fielding JM (1967) Spiral grain in Pinus radiata plantations in the Australian Capital Territory. Leafl For Timb Bur Aust 103Google Scholar
  20. Greenidge KNH (1958) Rates and patterns of moisture movement in tree. In: Thimann KV, Critchfield WB, Zimmermann MH (eds) The physiology of forest trees. Ronald Press, New York, pp 19–41Google Scholar
  21. Harris JM (1967) The causes of spiral grain in the corewood of radiata pine. Proc 14th Congr IUFRO, Munich 1967 Pt IX Sect 22/41, pp 363–383Google Scholar
  22. Harris JM (1971) On the causes of spiral grain in the corewood of Pinus radiata D. Don. 15th Congr IUFRO, Gainesville, Sect 41, pp 1–3Google Scholar
  23. Harris JM (1989) Spiral grain and wave phenomena in wood formation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Hartig R (1895) Über den Drehwuchs der Kiefer. Forstl Naturwiss Z 4: 313–326PubMedGoogle Scholar
  25. Hejnowicz Z (1980) Tensional stress in the cambium and its developmental significance. Am J Bot 67: 1–5Google Scholar
  26. Hejnowicz Z, Zagorska-Marek B (1974) Mechanism of changes in grain inclination in wood produced by storeyed cambium. Acta Soc Bot Pol 43: 381–398Google Scholar
  27. Howard NF (1932) Twisted trees. Science 75: 132–133Google Scholar
  28. Huber B (1958) Anatomical and physiological investigations on food translocation in trees. In: Thimann KV, Critchfield WB, Zimmermann MH (eds) The physiology of forest trees. Ronald Press, New York, pp 367–379Google Scholar
  29. Jacot AP (1931) Tree twist. Science 74: 567Google Scholar
  30. Kaasa J (1976) Spiral grain in Picea abies and Pinus sylvestris. Tidsskr Skogbruk 84: 299–309Google Scholar
  31. Keller R, Azoeuf P, Hoslin R (1974) Détermination de l'angle de la fibre torse d'arbres sur pied à l'aide d'un traceur radioactif. Ann Sci For 31: 161–169Google Scholar
  32. Kennedy RW, Elliott GK (1957) Spiral grain in red alder. For Chron 33: 238–251Google Scholar
  33. Kirschner H, Sachs T, Fahn A (1971) Secondary xylem reorientation as a special case of vascular tissue differentiation. Isr J Bot 20: 184–198Google Scholar
  34. Knigge W, Schulz H (1959) Methodische Untersuchungen über die Möglichkeit der Drehwuchsfeststellung in verschiedenen Alterszonen von Laubhölzern. Holz Roh Werkst 17: 341–351Google Scholar
  35. Knorr F (1932) What causes twisted trees? J Hered 23: 49–52Google Scholar
  36. Koehler A (1931) More about twisted grain in trees. Science 73: 477Google Scholar
  37. Kozlowski TT (1961) The movement of water in trees. For Sci 7: 177–192Google Scholar
  38. Kozlowski TT, Winget CH (1963) Patterns of water movement in forest trees. Bot Gaz 124: 301–311CrossRefGoogle Scholar
  39. Kozlowski TT, Hughes JF, Leyton L (1967) Movement of injected dyes in gymnosperm stems in relation to tracheid alignment. Forestry 40: 207–219Google Scholar
  40. Krahl-Urban J (1953) Hinweise auf individuale Erbanlagen bei Eichen und Buchen. Forstgenetik Forstpflanzenzüchtung 2: 51–59Google Scholar
  41. Krahl-Urban J (1967) Über den Drehwuchs bei Buchen. Proc 14th Congr IUFRO, Munich 1967, Pt IX, Sect 22/41, pp 384–397Google Scholar
  42. Kramer PJ, Kozlowski TT (1979) Physiology of wood plants. Academic Press, OrlandoGoogle Scholar
  43. Krempl H (1970) Untersuchungen über den Drehwuchs bei Fichte. MittForstl Bundes-Versuchsanst Wien 89Google Scholar
  44. Kubler H (1987) Growth stresses in trees and related wood properties. For Abstr 48: 131–189Google Scholar
  45. Kubler H (1988) Silvicultural control of mechanical stresses in trees. Can J For Res 18: 1215–1225Google Scholar
  46. Leopold AC, Kriedemann PE (1975) Plant growth and development, 2nd edn. McGraw-Hill, New York pp 195–220Google Scholar
  47. Liese W, Ammer U (1962) Anatomische Untersuchungen an extrem drehwüchsigem Kiefernholz. Holz Roh Werkst 20: 339–346Google Scholar
  48. Lowery DP (1965) Spiral grain patterns in Douglas-fir. Proc Mont Acad Sci 25: 62–67Google Scholar
  49. Lowery DP (1967) Spiral grain in individual growth rings. J For 65: 120–121Google Scholar
  50. Lowery DP, Erickson ECO (1967) The effect of spiral grain on pole twist and bending strength. US For Serv Res Pap Intermt For Range Exp Sta INT-35, Missoula, MontGoogle Scholar
  51. MacDaniels LH, Curtis OF (1930) The effect of spiral ringing on solute translocation and the structure of the regenerated tissues of the apple. Cornell Univ Agric Exp Stn, Mem 133: 3–31Google Scholar
  52. Mayer-Wegelin H (1956) Die biologische, technologische und forstliche Bedeutung des Drehwuchses der Waldbäume. Forstarchiv 27: 265–271Google Scholar
  53. Meyer KA (1949) Sprachliche und literarische Bemerkungen zum Problem ‚Drehwuchs’. Mitt Schweiz Anst Forstl Versuchswes 26: 331–347Google Scholar
  54. Misra P (1943) Correlation between excentricity and spiral grain in the wood of Pinus longifolia. Forestry 17: 67–80Google Scholar
  55. Neeff F (1914) Über Zellumlagerung. Z Bot 6: 465–547Google Scholar
  56. Neeff F (1922) Über polares Wachstum von Pflanzenzellen. Jahrb Wiss Bot 61: 205–283Google Scholar
  57. Nicholls JWP (1965) The possible causes of spiral grain. Proc Meet Sect 41 IUFRO, Melbourne, vol. 1, pp 1–7Google Scholar
  58. Nicholls JWP, Brown AG (1974) The relationship between ring width and wood characteristics in double-stemmed trees of radiata pine. N Z J For Sci 4: 105–111Google Scholar
  59. Northcott PL (1965) The effects of spiral grain on the usefulness of wood. Proc Meet Sect 41 IUFRO, Melbourne, vol. 1, pp 1–5Google Scholar
  60. Noskowiak AF (1963) Spiral grain in trees ... a review. For Prod J 13: 266–275Google Scholar
  61. Paul BH (1956) Changes in spiral grain direction in Ponderosa Pine. Rep US For Prod Lab 2058, Madison, WisGoogle Scholar
  62. Pawsey CK (1965) A study of spiral grain in clones of Pinus radiata. Aust For 29: 89–95Google Scholar
  63. Pawsey CK, Brown AG (1970) Variation in properties of breast height wood samples of trees of Pinus radiata. Aust For Res 4: 15–25Google Scholar
  64. Preston RD (1949) Spiral structure and spiral growth. The development of spiral grain in conifers. Forestry 23: 48–55Google Scholar
  65. Preston RD (1952) Movement of water in higher plants. In: Frey-Wyssling A (ed) Deformation and flow in biological systems. North Holland, Amsterdam, pp 257–321Google Scholar
  66. Pyszyński W (1977) Mechanism of formation of spiral grain in Aesculus stems: dissymmetry of deformation of stems caused by cyclic torsion. Acta Soc Bot Pol 46: 501–522Google Scholar
  67. Pyszyński W (1980) Pattern of ray arrangement on cross section of bark of Aesculus. Acta Soc Bot Pol 49: 415–422Google Scholar
  68. Quirk JT, Smith DM, Freese F (1975) Effect of mechanical stress on growth and anatomical structure of red pine (Pinus resinosa Ait.): torque stress. Can J For Res 5: 691–699Google Scholar
  69. Rault JP, Marsh EK (1952) The incidence and sylvicultural implications of spiral grain in Pinus longifolia Roxb. in South Africa and its effect on converted umber. Proc Commonw For Conf Can, For Prod Inst, PretoriaGoogle Scholar
  70. Roberts LW, Gahan PB, Aloni R (1988) Vascular differentiation and plant growth regulators. Springer, Berlin Heidelberg New York, p VIIGoogle Scholar
  71. Rudinsky JA, Vité JP (1959) Certain ecological and phylogenetic aspects of the pattern of water conduction in conifers. For Sci 5: 259–266Google Scholar
  72. Sachsse H (1965) The effect of the rate of growth on the occurrence of spiral grain. Proc Meet Sect 41 IUFRO, Melbourne, vol. 1, pp 7–15Google Scholar
  73. Thair BW, Sleeves TA (1976) Response of the vascular cambium to reorientation in patch grafts. Can J Bot 54: 361–373Google Scholar
  74. Thunell B (1951) Über die Drehwüchsigkeit. Holz Roh Werkst 9: 293–297Google Scholar
  75. Trendelenburg R, Mayer-Wegelin H (1955) Das Holz als Rohstoff. Hanser, MunichGoogle Scholar
  76. Ullrich H (1951) Über die Prinzipien pflanzlicher Festigkeitsverhältnisse, insbesondere bei Holzpflanzen. Ber Dtsch Bot Ges 64: 275–283Google Scholar
  77. US For Prod Lab (1987) Wood handbook: wood as an engineering material. Agric Handb 72. GPO, Washington, D. C., p 4–29Google Scholar
  78. Venkataramanan SV (1967) Spiral grain in chir (Pinus roxburghii Sargent). Proc 14th Congr IUFRO, Munich 1967, Pt IX Sect 22/41, pp 484–497Google Scholar
  79. Vité JP (1958) Über die transpirationsphysiologische Bedeutung des Drehwuchses bei Nadelhölzern. Forstwiss Centralbl 77: 193–203PubMedGoogle Scholar
  80. Vité JP (1959) Observations on the movement of injected dyes in Pinus ponderosa and Abies concolor. Contrib Boyce Thompson Inst 20: 7–26Google Scholar
  81. Vité JP (1967) Water conduction and spiral grain. Proc 14th Congr IUFRO, Munich 1967, Pt IX Sect 22/41, pp 338–351Google Scholar
  82. Vité JP, Rudinsky JA (1959) The water conducting systems in conifers and their importance in the distribution of trunk-injected chemicals. Contrib Boyce Thompson Inst 20: 27–38Google Scholar
  83. Webb CD (1969) Variation of interlocked grain in sweetgum. For Prod J 19 (8) 45–48Google Scholar
  84. Wedell E (1961) Influence of interlocked grain on the bending strength of timber, with particular reference to Utile and Greenheart. J Inst Wood Sci 7: 56–72Google Scholar
  85. Wellner CA, Lowery DP (1967) Spiral-grain — a cause of pole twisting. US For Serv Res Pap Intermt For Range Exp Sta INT-38, Missoula, MontGoogle Scholar
  86. Wentworth CK (1931) Twist in the grain of coniferous trees. Science 73: 192Google Scholar
  87. Worall JG (1980) The impact of environment on cambial growth. In: Control of shoot growth in forest trees. IUFRO Workshop, Fredericton, Canada, pp 127–142Google Scholar
  88. Yeager WC (1931) Regarding twist in conifers. Science 73: 392–393Google Scholar
  89. Ziegler H (1964) Storage, mobilization and distribution of reserve material in trees. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, London, pp 303–320Google Scholar
  90. Ziegler H (1975) Nature of transported substances. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, ns, vol. 1 Springer, Berlin Heidelberg New York, pp 59–100Google Scholar
  91. Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin Heidelberg New YorkGoogle Scholar
  92. Zimmermann MH, Brown CL (1971) Trees — structure and function. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Hans Kubler
    • 1
  1. 1.Department of ForestryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations