Advertisement

Skeletal Radiology

, Volume 23, Issue 1, pp 3–13 | Cite as

Ossification and pseudoepiphysis formation in the “nonepiphyseal” end of bones of the hands and feet

  • J. A. Ogden
  • T. M. Ganey
  • T. R. Light
  • R. J. Belsole
  • T. L. Greene
Articles

Abstract

Metacarpals, metatarsals, and phalanges were studied to assess the developmental morphology of “secondary” ossification in the “nonepiphyseal” ends of these bones as well as the formation of the pseudoepiphysis as an epiphyseal ossification variant. Both direct ossification extension from the metaphysis into the epiphysis and pseudoepiphysis formation preceded, and continued to be more mature than, formation and expansion of the “classic” epiphyseal (secondary) ossification center at the opposite end of each specific bone. Direct metaphyseal to epiphyseal ossification usually started centrally and expanded hemispherically, replacing both physeal and epiphyseal cartilage simultaneously. In contrast, when remnants of “physis” were retained, while juxtaposed epiphyseal cartilage was replaced, a pseudoepiphysis formed. There were three basic patterns of pseudoepiphysis formation. First, a central osseous bridge extended from the metaphysis across the “physis” into the epiphysis and subsequently expanded to create a mushroom-like osseous structure. In the second pattern a peripheral osseous bridge formed, creating either an osseous ring or an eccentric bridge between the metaphysis and the epiphysis. In the third pattern, multiple bridging occurred. In each situation the associated remnant “physis” lacked typical cell columns and was incapable of significantly contributing to the postnatal longitudinal growth of the involved bone. Pseudoepiphyses were well formed by 4–5 years and coalesced with the rest of the bone months of years before skeletal maturation was attained at the opposite epiphyseal end, which ossified in the typical pattern (i.e., formation of a secondary center de novo completely within the cartilaginous epiphysis). This process may also affect the development and appearance of ossification within the longitudinal epiphyseal bracket (“delta phalanx”).

Key words

Epiphysis Epiphyseal ossifications Secondary ossification Pseudoepiphysis Bone bridging Longitudinal epiphyseal bracket “delta” phalanx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailleul LC (1911) Notes sur le développement de l'extremité distale du premier metacarpien et du premier metatarsien. Bull Mem Soc Anat Paris 86: 537Google Scholar
  2. 2.
    Bailleul LC (1914) Développement et valeur du ler metacarpien. Bull Mem Soc Anat Paris 89: 34Google Scholar
  3. 3.
    Broom R (1906) On the arrangement of the epiphysis of the mammalian metacarpals and metatarsals. Anat Anz 28: 106Google Scholar
  4. 4.
    Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20: 1095CrossRefPubMedGoogle Scholar
  5. 5.
    Cotellessa G, Selmi L (1965) Ossificazione carpale e pseudoepifisi. Minerva Pediatr 17: 1230Google Scholar
  6. 6.
    Eisenstein R, Kuettner KE, Neopolitan C, Soble LW, Sorgente M (1975) The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am J Path 81: 337Google Scholar
  7. 7.
    Floyd WE III, Zaleske DJ, Schiller AL, Trahan C, Mankin WJ (1987) Vascular events associated with the appearance of the secondary center of ossification in the murine distal femoral epiphysis. J Bone Joint Surg [Am] 69: 185Google Scholar
  8. 8.
    Freund L (1904) Über Pseudoepiphysen. Z Morph Anthrop 8: 87Google Scholar
  9. 9.
    Haines RW (1942) The evolution of epiphyses and of endochondral bone. Biol Rev 17: 267Google Scholar
  10. 10.
    Haines RW (1969) Epiphyses and sesamoids. In: Gans C, Bellairs AA, Parsons TS (eds) Biology of the reptilia, vol 1. Academic Press, London, pp 81–115Google Scholar
  11. 11.
    Haines RW (1974) The pseudoepiphysis of the first metacarpal of man. J Anat 117:145Google Scholar
  12. 12.
    Josefson A (1916) Die Pseudoepiphysen, ein Stigma der endokrinen Hemmung des Skeletettenwachstums. Fortschr Roentgenstr 24:266Google Scholar
  13. 13.
    Kuettner KE, Pauli BU (1978) Resistance of cartilage to normal and neoplastic invasion. In: Horton JE, Tarpley TM, Davis WF (eds) mechanisms of localized bone loss. Special supplement to Calcif Tissue Res Abstr, p 251Google Scholar
  14. 14.
    Kuettner KE, Benedicht UP, Soble L (1978) Morphological studies on the resistance of cartilage invasion by osteosarcoma cells in vitro and in vivo. Cancer Res 38: 277Google Scholar
  15. 15.
    Lee MMC, Garn SM (1967) Pseudoepiphyses or notches in the non-epiphyseal end of metacarpal bones in healthy children. Anat Rec 159: 263Google Scholar
  16. 16.
    Lee MM, Garn SM, Rohmann CG (1968) Relation of metacarpal notching to stature and maturational status of normal children. Invest Radiol 3: 96Google Scholar
  17. 17.
    Levine E (1972) Notches in the non-epiphyseal ends of the metacarpals and phalanges in children of four South African populations. Am J Phys Anthropol 36: 407Google Scholar
  18. 18.
    Matzen PF, Schmidt W (1982) Pseudoepiphysen. Beitr Orthop Traumato 29:467Google Scholar
  19. 19.
    McCarthy SM, Ogden JA (1982) Epiphyseal extension of an aneurysmal bone cyst. J Pediatr Orthop 2:171Google Scholar
  20. 20.
    Ogden JA (1990) Skeletal injury in the child, 2nd edn. Saunders, Philadelphia, pp 36Google Scholar
  21. 21.
    Ogden JA, Grogan DP (1987) Prenatal skeletal development and growth of the musculoskeletal system. In: Albright JA, Brand RA (eds) The scientific basis of orthopaedics. Appleton & Lange, New York, pp 47Google Scholar
  22. 22.
    Ogden JA, Conlogue GJ, Rhodin AGJ (1981) Roentgenographic indicators of sekeletal maturity in marine mammals. Skeletal Radiol 7: 119Google Scholar
  23. 23.
    Ogden JA, Light TR, Conlogue GJ (1981) Correlative roentgenography and morphology of the longitudinal epiphyseal bracket. Skeletal Radiol 6: 107Google Scholar
  24. 24.
    Ogden JA, Grogan DP, Light TR (1987) Postnatal skeletal development and growth of the musculoskeletal system. In: Albright JA, Brand RA (eds) The scientific basis of orthopaedics. Appleton & Lange, New York, pp 91Google Scholar
  25. 25.
    Pfitzner W (1890) Die kleine Zehe. Arch Anat Physiol 17:12Google Scholar
  26. 26.
    Poznanski AK (1978) Diagnostic clues in the growing ends of bones. J Can Assoc Radiol 29:7Google Scholar
  27. 27.
    Resnick D, Niwayama G (1988) Diagnosis of bone and joint disorders, 2nd edn. Saunders, PhiladelphiaGoogle Scholar
  28. 28.
    Silverman FN (1989) Caffey's pediatric X-ray diagnosis. An integrated imaging approach, 8th edn. Year Book, ChicagoGoogle Scholar
  29. 29.
    Snodgrasse RM, Dreizen S, Parker GS, Spies TD (1955) Serial sequential development of anomalous metacarpal and phalangeal ossification centers in the human hand. Growth 19: 307Google Scholar
  30. 30.
    Stettner E (1931) Ossificationsstudien am Handskelett. II. Über Pseudoepiphysen des Handskeletts. Z Kinderheilkd 51: 459Google Scholar
  31. 31.
    Thomson A (1869) On the difference in the mode of ossification of the first and other metacarpal and metatarsal bones. J Anat 3: 131Google Scholar
  32. 32.
    Wagner R (1951) Non-endocrine deviations from the normal pattern of osseous development. Am J Dis Child 82: 519Google Scholar
  33. 33.
    Wagner R (1956) Non-endocrine dwarfism and pseudoepiphyses. Am J Dis Child 91:6Google Scholar
  34. 34.
    Wong M, Carter DR (1988) Mechanical stress and morphogenetic endochondral ossification of the sternum. J Bone Joint Surg [Am] 70: 992Google Scholar

Copyright information

© International Skeletal Society 1994

Authors and Affiliations

  • J. A. Ogden
    • 1
  • T. M. Ganey
    • 1
  • T. R. Light
    • 1
  • R. J. Belsole
    • 2
  • T. L. Greene
    • 3
  1. 1.Shriners Hospital for Crippled Children (Tampa and Chicago Units)TampaUSA
  2. 2.Division of Orthopaedic SurgeryUniversity of South FloridaTampaUSA
  3. 3.Florida Orthopaedic InstituteUSA

Personalised recommendations