Physics and Chemistry of Minerals

, Volume 21, Issue 3, pp 133–139 | Cite as

Microstructures of AIPO4 subjected to high shock pressures

  • P. Cordier
  • A. J. Gratz
  • J. C. Doukhan
  • W. J. Nellis
Article

Abstract

Berlinite single crystal specimens were shocked to peak pressures 12 and 24 GPa. Specimens were placed in an Al capsule to minimize shock-wave reflections at interfaces between specimen and capsule. Shock pressures were achieved with a 6.5-m-long two-stage gun. The shock-induced microstructures in recovered specimens were then investigated by Transmission Electron Microscopy. In the sample shocked at 12 GPa, the prominent shock-induced defects are dislocations and basal a glide appears to be the only glide system activated. In contrast, the sample shocked at 24 GPa exhibits no dislocations. The material is partially converted into an amorphous phase occurring under the form of thin amorphous lamellae parallel to the }10\(\bar 1\)n{ planes (n=0, 2, 3, 4). This microstructure is very similar to the one observed in experimentally shocked quartz.

Key words

Berlinite Experimental shock Amorphization TEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boulogne B, François P, Cordier P, Doukhan JC, Philippot E, Jumas JC (1988a) Plastic deformation of synthetic wet α-berlinite AlPO4. Philos Mag A 57:411–430Google Scholar
  2. Boulogne B, Cordier P, Doukhan JC (1988b) Defects and hydrolytic weakening in α-berlinite AlPO4. A structural analog of quartz. Phys Chem Minerals 16:250–261CrossRefGoogle Scholar
  3. Chaplot SL, Sikka SK (1993) Molecular dynamics simulation of pressure-induced crystalline-to-amorphous transition in some corner-linked polyhedral compounds. Phys Rev B 47:5710–5714CrossRefGoogle Scholar
  4. Cordier P, Doukhan JC, Peyronneau J (1993) Structural transformations of quartz and berlinite AlPO4 at high pressure and room temperature: a transmission electron microscopy investigation. Phys Chem Minerals 20:176–189CrossRefGoogle Scholar
  5. Doukhan JC, Trépied L (1985) Plastic deformation of quartz single crystals. Bull Minéral 108:97–123Google Scholar
  6. Fowles R (1967) Dynamic compression of quartz. J Geophys Res 72:5729–5742Google Scholar
  7. Goltrant O, Cordier P, Doukhan JC (1991) Planar deformation features in shocked quartz: a transmission electron microscopy study. Earth Planet Sci Lett 106:103–115CrossRefGoogle Scholar
  8. Goltrant O, Leroux H, Doukhan JC, Cordier P (1992) Formation mechanisms of planar deformation features in naturally shocked quartz. Phys Earth Planet Inter 74:219–240CrossRefGoogle Scholar
  9. Gratz AJ (1984) Deformation in laboratory-shocked quartz. J NonCryst Sol 67:543–558Google Scholar
  10. Gratz AJ, Tyburczy J, Christie J, Ahrens T, Pongratz P (1988) Shock metamorphism of deformed quartz. Phys Chem Minerals 16:221–233CrossRefGoogle Scholar
  11. Gratz AJ, Nellis WJ, Christie JM, Brocious W, Swegle J, Cordier P (1992) Shock metamorphism of quartz with initial temperatures -170° C to 1000° C. Phys Chem Minerals 19:267–288CrossRefGoogle Scholar
  12. Griggs DT (1967) Hydrolytic weakening in quartz and other silicates. Geophys J R Astron Soc 14:19–31Google Scholar
  13. Griggs DT, Blacic JD (1964) The strength of quartz in the ductile regime. Proceedings of the Am Geophys Union Meeting 45:102–103Google Scholar
  14. Hazen RM, Finger LW (1982) Comparative crystal chemistry. John Wiley, New YorkGoogle Scholar
  15. Hemley RJ, Jephcoat AP, Mao HK, Ming LC, Manghnani MH (1988) Pressure-induced amorphization of crystalline silica. Nature 334:52–54CrossRefGoogle Scholar
  16. Jayaraman A, Wood DL, Maines SrRG (1987) High-pressure Raman study of the vibrational modes in AlPO4 and SiO2 (αquartz). Phys Rev B 35:8316–8321CrossRefGoogle Scholar
  17. Kruger MB, Jeanloz R (1990) Memory glass: an amorphous material formed from AlPO4. Science 249:647–649Google Scholar
  18. Lund F (1993) Dislocation loop driven phase transition in three dimensions, bulk melting and overheated solids. J Non-Cryst Sol 156–158:536–539Google Scholar
  19. Mishima O, Calvert LD, Whalley E (1984) ‘Melting’ ice 1 at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310:393–395CrossRefGoogle Scholar
  20. Nabarro (1987) Theory of crystal dislocations. Oxford Press 821 ppGoogle Scholar
  21. Nicola JH, Scott JF, Ng HN (1978) Raman study of the α-β cristobalite phase transition in AlPO4. Phys Rev B 18:1972–1976CrossRefGoogle Scholar
  22. Poirier JP (1986) Dislocation-mediated melting of iron and the temperature of the Earth's core. Geophys J R Astron Soc 85:315–328Google Scholar
  23. Sankaran H, Sharma SM, Sikka SK, Chidambaram R (1990) Pressure induced amorphization of AlPO4. Pramana — J Phys 35:177–180Google Scholar
  24. Sowa H, Macavei J, Schulz H (1990) The crystal structure of berlinite AlPO4 at high pressure. Z Kristallogr 192:119–136Google Scholar
  25. Tse JS, Klug DD (1992) Structural memory in Pressure-Amorphized AlPO4. Science 255:1559–1561Google Scholar
  26. Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33:922–937CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • P. Cordier
    • 1
  • A. J. Gratz
    • 2
  • J. C. Doukhan
    • 1
  • W. J. Nellis
    • 2
  1. 1.Laboratoire de Structure et Propriétés de l'Etat Solide — UA CNRS 234 Université des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance
  2. 2.Institute of Geophysics and Planetary Physics and H Division Lawrence Livermore National Laboratory University of CaliforniaLivermoreUSA

Personalised recommendations