Advertisement

Effects of metals on the total lipid content in the gypsy moth (Lymantria dispar, lymantriidae, lepid.) and its hemolymph

  • J. Ortel
Article

Keywords

Lipid Waste Water Water Management Water Pollution Lipid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell RA, Owens CD, Shapiro M, Tardif JR (1981) Mass rearing and virus production. In: Doane CC, McManus ML (eds) The Gypsy Moth: Research Toward Integrated Pest Managment. Forest Service, Science and Education Agency, Technical Bulletin 1584 US Department of Agriculture, Washington, DCGoogle Scholar
  2. Barnett JW, Berger RS (1970) Growth and fatty acid composition of bollworms Heliothis zea (Lepidoptera: Noctuidae), as affected by dietary fats. Ann Ent Soc Am 63: 917–924PubMedGoogle Scholar
  3. Chang F, Friedman S (1971) A developmental analysis of the uptake and release of lipids by the fat-body of the tobacco hornworm, Manduca sexta. Insect Biochem 1: 63–80Google Scholar
  4. Gintenreiter (1994) Gewebsspezifische Akkumulation der Metalle Cadmium, Blei, Kupfer und Zink in Lymantria dispar (Lymantriidae, Lepid.) Larven — bei Dauerbelastung und in einer metallkinetischen Studie. Dissertation Inst für Zoologie Univ WienGoogle Scholar
  5. Gintenreiter S, Ortel J, Nopp H (1993a) Effects of different dietary levels of cadmium, lead, copper, and zinc on the vitality of the forest pest insect Lymantria dispar L. (Lymantriidae, Lepid). Arch Environ Contam Toxicol 25: 62–66Google Scholar
  6. Gintenreiter S, Ortel J, Nopp H (1993b) Bioaccumulation of cadmium, lead, copper, and zinc in successive developmental stages of Lymantria dispar L. (Lymantriidae, Lepid.) — a life-cycle study. Arch Environ Contam Toxicol 25: 55–61Google Scholar
  7. Grau PA, Terriere LC (1971) Fatty acid profile of the cabbage looper, Trichoplusia ni, and the effect of diet and rearing conditions. J Insect Physiol 17: 1637–1649Google Scholar
  8. Islam A, Roy S (1983) Effects of CdCl2 on the quantitative variation of carbohydrate, protein, aminoacids and cholesterol in Chrysocoris stolli Wolf (Insecta: Hemiptera). Curr Sci 52: 215–217Google Scholar
  9. Janda V (1987) Beitrag zur Stoffwechselphysiologie der Insektenmetamorphose. Scripta Fac Sci Nat Univ Purk Brun 17 (9–10 Biologia): 515–530Google Scholar
  10. Nußbaumer Ch (1992) Der Einfluß von natürlichem Futter und künstlicher Diät auf die Stoff- und Energiebilanz von Lymantria dispar L. (Lymantriidae, Lep.). Diplomarbeit Inst für Zoologie Univ WienGoogle Scholar
  11. Ortel J (1991) Effects of lead and cadmium on chemical composition and total water content of the pupal parasitoid, Pimpla turionellae. Entomol Exp Appl 59: 93–100Google Scholar
  12. Ortel J, Gintenreiter S, Nopp H (1993) The effects of host metal stress on a parasitoid in an insect/insect relationship (Lymantria dispar L., Lymantriidae Lepid. — Glyptapanteles liparidis Bouchè, Braconidae). Arch Environ Contam Toxicol 24: 421–426Google Scholar
  13. Simpson SJ, Raubenheimer D (1993) The central role of the haemolymph in the regulation of nutrient intake in insects. Physiol Ent 18: 395–403.Google Scholar
  14. Slansky F Jr, Scriber JM (1985) Food consumption and utilization. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology (vol. 4). Pergamon Press, Oxford, UKGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • J. Ortel
    • 1
  1. 1.Institut für Zoologie, Abt. StoffwechselphysiologieUniversity of ViennaAlthanstraßeAustria

Personalised recommendations