Advertisement

Physics and Chemistry of Minerals

, Volume 18, Issue 4, pp 215–223 | Cite as

Raman scattering study of the high-temperature vibrational properties and stability of CaGeO3 perovskite

  • Dan J. Durben
  • George H. Wolf
  • Paul F. McMillan
Article

Abstract

The vibrational properties of metastable Ca-GeO3 perovskite are investigated as a function of temperature using Raman scattering. Mode-assignments are derived from polarized spectra of optically oriented single crystals. Neither symmetry-breaking structural transformations nor soft-mode behavior is revealed in the Raman spectra between room temperature and 650° C. Only a small decrease in the local static octahedral tilt angles can be inferred from the Raman data over this temperature range. A Landau extrapolation of the lowest frequency Ag modes suggests that these modes become critical near 2000° C, a temperature that is above the extrapolated zero pressure melting point.

Keywords

Melting Point Perovskite Raman Spectrum Mineral Resource Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov KS (1976) The sequences of structural phase transitions in perovskites. Ferroelectrics 14:801–805Google Scholar
  2. Berger J, Hauret G, Rousseau M (1978) Brillouin scattering investigation of the structural phase transition of TlCdF3 and RbCaF3. Solid State Commun 25:569–571Google Scholar
  3. Billard D, Servoin JL, Gervais F, Piriou B (1979) High-temperature conventional and Fourier-transform infrared spectroscopy of vibrational states in oxide crystals. High Temp-High Pressures 11:414–422Google Scholar
  4. Bina CR, Silver PG (1990) Constraints on lower mantle composition and temperature from density and bulk sound velocity profiles. Geophys Res Lett 17:1153–1156Google Scholar
  5. Boyer LL, Hardy JR (1981) Theoretical study of the structural phase transition in RbCaF3. Phys Rev B 24:2577–2591Google Scholar
  6. Bukowinski MST, Wolf GH (1988) Equations of state and possible critical phase transitions in MgSiO3 perovskite. In: Ghose S, Coy JMD, Salje S (eds) Structural and Magnetic Phase Transitions in Minerals. Springer, Berlin Heidelberg New York, pp 91–112Google Scholar
  7. Bukowinski MST, Wolf GH (1990) Thermodynamically consistent decompression: implications for lower mantle composition. J Geophys Res 95:12583–12593Google Scholar
  8. Cowley RA, Buyers WJL, Dolling G (1969) Relationship of normal modes of vibration of strontium titanate and its antiferroelectric phase transition at 110 K. Solid State Commun 7:181–184Google Scholar
  9. Fleury PA, Scott JF, Worlock JM (1968) Soft phonon modes and the 110 K phase transition in SrTiO3. Phys Rev Lett 21:16–19Google Scholar
  10. Fomin VI, Popkov YA (1976) Anomalies of Brillouin scattering of light near phase transitions in KMnF3 crystal. Sov Phys JETP 43:64–68Google Scholar
  11. Fujii Y, Hoshino S, Yamada Y, Shirane G (1974) Neutron scattering study on phase transitions of CsPbCl3. Phys Rev B15:4549–4559Google Scholar
  12. Gervais F, Piriou B (1975) Temperature dependence of transverse and longitudinal optic modes in the α and β phases of quartz. Phys Rev B11:3944–3950Google Scholar
  13. Gesi K, Axe JD, Shirane G (1972) Dispersion and damping of soft zone-boundary phonons in KMnF3. Phy Rev B5:1933–1941Google Scholar
  14. Hirotsu S, Suzuki T, Sawada S (1977) Ultrasonic velocity around the successive phase transition points of CsPbBr3. J Phys Soc Jpn 43:575–582Google Scholar
  15. Hirotsu S, Suzuki T (1978) Elastic constants and thermal expansion of CsPbCl3. J Phys Soc Jpn 44:1604–1611Google Scholar
  16. Hochli UT (1973) Acoustic anharmonicity and the ΔE effect in tetragonal SrTiO3. Solid State Commun 13:1369–1373Google Scholar
  17. Hochli UT, Bruce AD (1980) Elastic critical behavior in SrTiO3. J Phys C 13:1963–1976Google Scholar
  18. Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites, and perovskites. In: Akimoto S, Manghnani MH (eds) High-Pressure Research in Mineral Physics. Center for Academic Publications, Tokyo, pp 405–419Google Scholar
  19. Ito E, Takahashi E, Matsui Y (1984) The mineralogy and chemistry of the lower mantle: an implication of the ultrahigh-pressure phase relations in the system MgO FeO-SiO2. Earth Planet Sci Lett 67:238–248Google Scholar
  20. Jackson I (1983) Some geophysical constraints on the chemical composition of the earth's lower mantle. Geophys Res Lett 62:91–103Google Scholar
  21. Jeanloz R, Knittle E (1989) Density and composition of the lower mantle. Phil Trans R Soc Lond A 328:377–389Google Scholar
  22. Knittle E, Jeanloz R, Smith GL (1986) Thermal expansion of silicate perovskite and stratification of the earth's mantle. Nature 319:214–216Google Scholar
  23. Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 gigapascals. Science 235:668–670Google Scholar
  24. Landau LD, Lifshitz EM (1980) Statistical Physics. Pergamon, Oxford, p 544Google Scholar
  25. Liu LL (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys Res Lett 1:277–280Google Scholar
  26. Liu X, Wang Y, Liebermann RC (1988) Orthorhombic-tetragonal phase transition in CaGeO3 perovskite. Geophys Res Lett 15:1231–1234Google Scholar
  27. Liu X, Wang Y, Liebermann RC, Maniar PD, Navrotsky A (1991) Phase transition in CaGeO3 perovskite: evidence from x-ray powder diffraction, thermal expansion and heat capacity. Phys Chem Min, submittedGoogle Scholar
  28. Lockwood DJ, Torrie BH (1974) Raman scattering study of the three structural phases of KMnF3. J Phys C: Solid State Phys 7:2729–2744Google Scholar
  29. McMillan P, Ross N (1988) The Raman spectra of several orthorhombic calcium oxide perovskites. Phys Chem Min 16:21–28Google Scholar
  30. Megaw HD (1957) Ferroelectricity in Crystals. Methuen, London, p 220Google Scholar
  31. Midorikawa M, Ishibashi Y, Takagi Y (1979) Optical and dilatometric studies of KCaCl3 and RbCaCl3 crystals. J Phys Soc Jpn 46:1240Google Scholar
  32. Midorikawa M, Sawada A, Ishibashi Y (1980) A study of Raman scattering in RbCaCl3. J Phys Soc Jpn 48:1202–1205Google Scholar
  33. Modine FA, Sonder E, Unruh WP, Finch CB, Westbrook RD (1974) Phase transitions in RbCaF3. Phys Rev B 10:1623–1634Google Scholar
  34. Parise JB, Wang Y, Yeganeh-Haeri A, Cox DE, Fei Y (1990) Crystal structure and thermal expansion of (Mg, Fe)SiO3 perovskite. Geophys Res Lett 17:2089–2092Google Scholar
  35. Prokert F (1981) Neutron scattering studies on phase transitions and phonon dispersion in CsSrCl3. Phys Stat Sol B 104:261–265Google Scholar
  36. Ringwood AE, Major A (1967) Some high-pressure transformations of geophysical interest. Earth Planet Sci Lett 2:106–110Google Scholar
  37. Ross NL, Hazen RM (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Phys Chem Min 16:415–420Google Scholar
  38. Ross NL, Akaogi M, Navrotsky A, Susaki J, McMillan P (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res 91:4685–4696Google Scholar
  39. Rousseau M, Bulou A, Ridou C, Hewat AW (1980) A new model for phase transitions due to octahedra rotations in perovskite structure. Ferroelectrics 25:447–450Google Scholar
  40. Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 and the crystal chemistry of the GdFeO3-type perovskites. Am Mineral 68:1189–1198Google Scholar
  41. Shirane G, Yamada Y (1969) Lattice-dynamical study of the 110 K phase transition in SrTiO3. Phys Rev 177:858–863Google Scholar
  42. Slonczewski JC, Thomas H (1970) Interaction of elastic strain with the structural transition of strontium titanate. Phys Rev B 1:3599–3608Google Scholar
  43. Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnetperovskite transformation in CaGeO3: in-situ X-ray measurements using synchrotron radiation. Geophys Res Lett 12:729–732Google Scholar
  44. Wang CH (1984) Raman and Brillouin spectroscopy of structural phase transitions in crystals. In: Iqbal F, Owens FJ (eds) Vibrational Spectroscopy of Phase Transitions. Academic Press, New York, pp 153–207Google Scholar
  45. Wang Y, Guyot F, Yeganeh-Haeri A, Liu X, Weidner DJ, Liebermann RC (1989) Twinning in high-pressure perovskites. EOS Trans Amer Geophys Union 70:491Google Scholar
  46. Wolf GH, Bukowinski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: implications for lower mantle composition. In: Manghnani MH, Syono Y (eds) High-Pressure Research in Mineral Physics. Terra Scientific, Tokyo, pp 313–331Google Scholar
  47. Wolf GH, Durben DJ, McMillan PF (1990) Raman spectroscopic study of the vibrational properties and reversion of CaGeO3 and MgSiO3 perovskites as a function of temperature. EOS Trans Am Geophys Union 71:1667Google Scholar
  48. Yacoby Y, Cowley RA, Hosea TJ, Lockwood DJ, Taylor W (1978) Raman scattering at structural phase transitions. J Phys C: Solid State Phys 11:5065Google Scholar
  49. Yeganeh-Haeri A, Weidner DJ, Ito E (1989) Elasticity of MgSiO3 in the perovskite structure. Science 234:787–789Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Dan J. Durben
    • 1
  • George H. Wolf
    • 1
  • Paul F. McMillan
    • 1
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations