Journal of Molecular Medicine

, Volume 74, Issue 1, pp 1–12 | Cite as

IL-6 cytokine family and signal transduction: a model of the cytokine system

  • M. Hibi
  • K. Nakajima
  • T. Hirano


The interleukin 6 (IL-6) cytokine family, which includes IL-6, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), IL-11 and cardiotrophin-1 (CT-1), exhibits pleiotropy and redundancy in biological activities. The IL-6 family cytokines exhibit a helical structure. Their receptors belong to the type 1 cytokine receptor family. The receptors of the IL-6 family cytokines share a receptor subunit, which explains one of the mechanisms of functional redundancy. In this review, we describe the general features of the IL-6 cytokine family and its signal transduction mechanisms. Many functional properties of the IL-6 family of cytokines and their receptors are general features of the cytokine system.

Key words

IL-6 family Cytokine gp130 JAK STAT Signal transduction 



Interleukin 6


Leukemia inhibitory factor


Oncostatin M


Ciliary neurotrophic factor






Granulocyte colony-stimulating factor


Granulocyte-macrophage colony-stimulating factor




Janus kinase


Signal transducers and activators of transcription


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zilberstein A, Ruggieri R, Korn JH, Revel M (1986) Structure and expression of cDNA and genes for human interferon-beta- 2, a distinct species inducible by growth-stimulatory cytokines. EMBO J 5:2529–2537Google Scholar
  2. 2.
    May LT, Helfgott DC, Sehgal BP (1986) Anti-βB-interferon antibodies inhibit the increased expression of HLA-B7 mRNA in tumor necrosis factor-treated human fibroblasts: structural studies of the β2 interferon involved. Proc Natl Acad Sci USA 83:8957–8961Google Scholar
  3. 3.
    Haegeman G, Content J, Volckaert G, Derynck R, Tavernier J, Fiers W (1986) Structural analysis of the sequence encoding for an inducible 26-kDa protein in human fibroblasts. Eur J Biochem 159:625–632Google Scholar
  4. 4.
    Teranishi T, Hirano T, Arima N, Onoue K (1982) Human helper T cell factor(s) (ThF). II. Induction of IgG production in B lymphoblastoid cell lines and identification of T cell replacing factor (TRF)-like factor(s). J Immunol 128:1903–1908Google Scholar
  5. 5.
    Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiyama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T (1986) Complementary DNA for a novel human inteleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76PubMedGoogle Scholar
  6. 6.
    Sehgal PB, Grienger G, Tosato G (eds) (1989) Regulation of the acute phase and immune responses: interleukin-6. Ann N Y Acad Sci 557:1–583Google Scholar
  7. 7.
    Hirano T, Kishimoto T (1990) Interleukin 6. In: Sporn MB, Roberts AB (eds) Handbook of experimental pharmacol, vol 95: Peptide growth factors and their receptors. Springer, Berlin Heidelberg New York, pp 633–665Google Scholar
  8. 8.
    Van Snick J (1990) Interleukin-6: an overview. Annu Rev Immunol 8:253–278Google Scholar
  9. 9.
    Hirano T (1994) Interleukin 6. In: Thomson AW (ed) The cytokine handbook, 2nd ed. Academic Press, London, pp 145–168Google Scholar
  10. 10.
    Bazan JF (1990) Haemopoietic receptors and helical cytokines. Immunol Today 11:350–354Google Scholar
  11. 11.
    Bazan JF (1992) Neurotropic cytokines in the hematopoietic fold. Neuron 7:1–12Google Scholar
  12. 12.
    Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87:6934–6938Google Scholar
  13. 13.
    Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, Hirano T, Kishimoto T (1989) Interleukin 6 (IL-6) triggers the association of its receptor (IL-6-R) with a possible signal transducer, gp130. Cell 58:573–581CrossRefPubMedGoogle Scholar
  14. 14.
    Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157Google Scholar
  15. 15.
    Gearing DP, Comeau MR, Friend DJ, Gimpel, Thut CJ, Mcgourty J, Brasher KK, Kind JA, Gills S, Mosley B, Ziagler SF, Cosman D (1992) The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 255:1434–1437Google Scholar
  16. 16.
    Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, Birren SJ, Yasukawa K, Kishimoto T, Anderson DJ, Stahl N, Yancopoulos GD (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69:1121–1132Google Scholar
  17. 17.
    Yin T, Taga T, Tsang ML-S, Yasukawa K, Kishimoto T, Yang Y-C (1993) Involvement of IL-6 signal transducer gp130 in IL-11-mediated signal transduction. J Immunol 151:2555–2561Google Scholar
  18. 18.
    Taga T, Narazaki M, Yasukawa K, Saito T, Miki D, Hamaguchi M, Davis S, Shoyab M, Yancopoulos GD, Kishimoto T (1992) Functional inhibition of hematopoietic and neurotrophic cytokines by blocking the interleukin 6 signal transducer gp130. Proc Natl Acad Sci USA 89:10998–11001Google Scholar
  19. 19.
    Pennica D, King KL, Shaw KL, Luis E, Rullamas J, Luoh S, Darbonne WC, Knutzon DS, Yen R, Chien KR, Baker JB, Wood WI (1995) Expression cloning of cardiotrophin-1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 92:1142–1146Google Scholar
  20. 20.
    Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennovinen O (1994) Signaling by the cytokine receptor superfamily, JAKs and STATs. Trends Biochem Sci19:222–227CrossRefPubMedGoogle Scholar
  21. 21.
    Darnell JE, Kerr IM, Stark GM (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 257:803–806Google Scholar
  22. 22.
    Ramsay AJ, Husband AJ, Ramshaw IA, Bao S, Matthaei KI, Koehler G, Kopf M (1994) The role of interleukin-6 in mucosal IgA antibody responses in vitro. Science 264:561–563Google Scholar
  23. 23.
    Le J, Fredrickson G, Reis LFL, Diamantsein T, Hirano T, Kishimoto T, Vilcek J (1988) Interleukin 2-dependent and interleukin 2-independent pathways of regulation of thymocyte function by interleukin 6. Proc Natl Acad Sci USA 85: 8643–8647Google Scholar
  24. 24.
    Garman RD, Jacobs KA, Clark SC, Raulet DH (1987) B-cell-stimulatory factor 2 (β2 interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc Natl Acad Sci USA 84:7629–7633Google Scholar
  25. 25.
    Lotz M, Jirik F, Kabouridis R, Tsoukas C, Hirano T, Kishimoto T, Carson DA (1988) BSF-2/IL-6 is a costimulant for human thymocytes and T lymphocytes. J Exp Med 167:1253–1258Google Scholar
  26. 26.
    Takai Y, Wong GG, Clark SC, Burakoff SJ, Herrmann SH (1988) B cell stimulatory factor-2 is involved in the differentiation of cytotoxic T lymphocytes. J Immunol 140:508–512Google Scholar
  27. 27.
    Shabo Y, Lotem J, Rubinstein M, Revel M, Clark SC, Wolf SF, Kamen R, Sachs L (1988) The myeloid blood cell differentiation-inducing protein MGI-2A is interleukin 6. Blood 72:2070–2073Google Scholar
  28. 28.
    Miyaura C, Onozaki K, Akiyama Y, Taniyama T, Hirano T, Kishimoto T, Suda T (1988) Recombinant human interleukin 6 (B-cell stimulatory factor 2) is a potent inducer of differentiation of mouse myeloid leukemia cells (Ml). FEBS Lett 234:17–21Google Scholar
  29. 29.
    Oritani K, Kaisho T, Nakajima K, Hirano T (1992) Retinoic acid inhibits interleukin 6-induced macrophage differentiation and apoptosis in a murine hematopoietic cell line, Y6. Blood 80:2298–2305Google Scholar
  30. 30.
    Ishibashi T, Kimura H, Uchida T, Kariyone S, Friese P, Burstein SA (1989) Huamn interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA 86:5953–5957Google Scholar
  31. 31.
    Satoh T, Nakamura S, Taga T, Matsuda T, Hirano T, Kishimoto T, Kaziro Y (1988) Induction of neural differentiation in PC12 cells by B cell stimulatory factor 2/interleukin 6. Mol Cell Biol 8:3546–3549Google Scholar
  32. 32.
    Ishimi Y, Miyaura C, He Jin C, Akatsu T, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T, Kishimoto T, Suda T (1990) IL-6 is produced by osteoclasts and indues bone resorption. J Immunol 145:3297–3303Google Scholar
  33. 33.
    Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91Google Scholar
  34. 34.
    Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91Google Scholar
  35. 35.
    Poli V, Balena R, Fattori E, Markatos A, Yamamoto M, Tanaka H, Ciliberto G, Rodan GA, Costantini F (1994) Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 13:1189–1196Google Scholar
  36. 36.
    Gauldie J, Richards C, Harnish D, Lansdorp P, Baumann H (1987) Interferon β2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 84:7251–7255Google Scholar
  37. 37.
    Andus T, Geiger T, Hirano T, Northoff H, Ganter U, Bauer J, Kishimoto T, Heinrich PC (1987) Recombinant human B cell stimulatory factor 2 (BSF-2/IFNβ2) regulates β-fibrinogen and albumin mRNA levels in Fao-9 cells. FEBS Lett 221:18–22Google Scholar
  38. 38.
    Kopf M, Baumann H, Freer G, Fredenberg M, Lamers M, Kishimoto T, Zinkernagel R, Bluethmann H, Kohler G (1994) Impaired immune and acute-phase responses in interleukin-6deficient mice. Nature 3681:339–342Google Scholar
  39. 39.
    Van Damme J, Opdenakker G, Simpson RJ, Rubira MR, Cayphas S, Vink A, Billiau A, Snick JV (1987) Identification of the human 26-kDa protein, interferon β2 (IFNβ2), as a B cell hybridoma/plasmacytoma growth factor induced by interleukin 1 and tumor necrosis factor. J Exp Med 165:914–919Google Scholar
  40. 40.
    Van Snick J, Cayphas S, Szikora J-P, Renauld C, Van Roost E, Boon T, Simpson RJ (1988) cDNA cloning of murine interleukin-HP1: homology with human interleukin 6. Eur J Immunol 18:193–197Google Scholar
  41. 41.
    Aarden L, Lansdorp P, De Groot E (1985) A growth factor for B cell hybridomas produced by human monocytes. Lymphokines 10:175–185Google Scholar
  42. 42.
    Nordan RP, Potter M (1986) A macrophage-derived factor required by plasmacytomas for survival and proliferation in vitro. Science 233:566–569Google Scholar
  43. 43.
    Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, Kuramoto A, Kishimoto T (1988) Autocrine generation and essential requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83–85Google Scholar
  44. 44.
    Yoshizaki K, Nishimoto N, Matsumoto K, Tagoh H, Taga T, Deguchi Y, Kuritani T, Hirano T, Hashimoto K, Okada N, Kishimoto T (1990) Interleukin 6 and expression of its receptor on epidermal keratinocytes. Cytokine 2:381–387Google Scholar
  45. 45.
    Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, Kupper TS, Sehgal PB, Gottlieb AB (1989) Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 86:6367–6371Google Scholar
  46. 46.
    Turksen K, Kupper T, Degenstein L, Williams I, Fuchs E (1992) Interleukin 6: insight to its function in skin by overexpression in transgenic mice. Proc Natl Acad Sci USA 89:5068–5072Google Scholar
  47. 47.
    Horii Y, Muraguchi A, Iwano M, Matsuda T, Hirayama T, Yamada H, Fujii Y, Dohi K, Ishikawa H, Ohmoto Y, Yoshizaki K, Hirano T, Kishimoto T (1989) Involvement of interleukin-6 in mesangial proliferative glomerulonephritis. J Immunol 143:3949–3955Google Scholar
  48. 48.
    Miki S, Iwano M, Miki Y, Yamamoto M, Tang B Yokokawa K, Sonoda T, Hirano T, Kishimoto T (1989) Interleukin-6 (IL6) functions as an in vitro automne growth factor in renal cell carcinomas. FEBS Lett 250:607–610Google Scholar
  49. 49.
    Miles SA, Rezai AR, Salazar-Gonzalez JF, Meyden MV, Stevens RH, Logon DM, Mitsuyasu RT, Taga T, Hirano T, Kishimoto T, Martinez-Maza O (1990) AIDS Kaposi's sarcoma-derived cells produce and respond to interleukin 6. Proc Natl Acad Sci USA 87:4068–4072Google Scholar
  50. 50.
    Ikebuchi K, Wong GG, Clark SC, Ihle JN, Hirai Y, Ogawa M (1987) Interleukin-6 enhancement of interleukin-3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci USA 84:9035–9039Google Scholar
  51. 51.
    Koike K, Nakahata T, Tkai M, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Okano A, Akiyama Y, Akabane T (1988) Synergism of BSF-2/ Interleukin 6 and interleukin3 on development of multipotential hemopoietic progenitors in serum-free culture. J Exp Med 168:879–890Google Scholar
  52. 52.
    Chen L, Mory Y, Zilberstein A, Revel M (1988) Growth inhibition of human breast carcinoma and leukemia/lymphoma cell lines by recombinant interferon-β2. Proc Natl Acad Sci USA 85:8037–8041Google Scholar
  53. 53.
    Gearing D, Gough NM, King JA, Hilto DJ, Nicola NA, Simpson RJ, Nice EC, Kelso A, Metcalf D (1987) Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 6:3995–4002Google Scholar
  54. 54.
    Hilton DJ (1992) LIF: lots of interesting functions. Trends Biochem Sci 17:72–76Google Scholar
  55. 55.
    Williams RL, Hilton DJ, Pease S, Wilson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687Google Scholar
  56. 56.
    Mori M, Yamaguchi K, Abe K (1989) Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochem Biophys Res Commun 160:1085–1092Google Scholar
  57. 57.
    Yamamori T, Kukada K, Abersold R, Korsching S, Fann MJ, Patterson PH (1989) The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science 246:1412–1416Google Scholar
  58. 58.
    Lin L-FH, Mismer D, Lile JD, Armes LG, Butler ETIII, Vannice JL, Collins F (1989) Purification, cloning, and expression of ciliary neurotrophic factor (CNTF). Science 246:1023–1025Google Scholar
  59. 59.
    Adler R, Landa K, Manthorpe M, Varon S (1979) Cholinergic neurotrophic factors: Intraocular distribution of trophic activity for ciliary neurons. Science 204:143–1436Google Scholar
  60. 60.
    Barbin G, Manthorpe M, Varon S (1984) Purification of chick eye ciliary neurotrophic factor. J Neurochem 43:1468–1478Google Scholar
  61. 61.
    Manthorpe M, Skaper S, Williams LR, Varon S (1986) Purification of adult rat sciatic nerve ciliary neurotrophic factor. Brain Res 367:282–286Google Scholar
  62. 62.
    Ernsberger U, Sendtner M, Rohrer H (1989) Proliferation and differentiation of embryonic chick symphathetic neurons: effects of ciliary neurotrophic factor. Neuron 2:1275–1284Google Scholar
  63. 63.
    Saadat S, Sendtner M, Rohrer H (1989) Ciliary neurotrophic factor induces cholinergic diffferentiation of rat sympathetic neurons in culture. J Cell Biol 108:1807–1816Google Scholar
  64. 64.
    Hughes SM, Lillien LE, Raff MC, Rohrer H, Sedtner M (1988) Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature 335:70–73Google Scholar
  65. 65.
    Sendtner M, Kreutzberg GW, Thoenen H (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345:440–441Google Scholar
  66. 66.
    Murphy M, Reid K, Hilton DJ, Bartlett PF (1991) Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc Natl Acad Sci USA 88:3498–3501Google Scholar
  67. 67.
    Malik N, Kalestad JC, Gunderson NL, Austin SD, Neubauer MG, Ochs V, Marquardt H, Zarling JM, Shoyab M, Wei C-M, Linsley P, Rose TM (1989) Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M. Mol Cell Biol 9:2847–2853Google Scholar
  68. 68.
    Zarling JM, Shoyab M, Marquardt H, Hanson MB, Lioubin MN, Todaro GJ (1986) Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 83:9739–9743Google Scholar
  69. 69.
    Nair BC, DeVico AL, Nakamura S, Copeland TD, Chen Y, Patel A, O'Neil T, Oroszlan S, Gallo RC, Sarngadharan MG (1992) Identification of a major growth factor for AIDS-Kaposi's sarcoma cells as oncostatin M. Science 255:1430–1432Google Scholar
  70. 70.
    Miles SA, Martinez-Maza O, Rezai A, Magpantay L, Kishimoto T, Nakamura S, Radka SF, Linsley PS (1992) Oncostatin M as a potent mitogen for AIDS-Kaposi's sarcoma-derived cells. Science 255:1432–1434Google Scholar
  71. 71.
    Paul SR, Bennett F, Calvetti JA, Kelleher K, Wood CR, O'Hara RM Jr, Leary AC, Sibley B, Clark SC, Williams DA, Yang Y-C (1990) Proc Natl Acad Sci USA 87:7512–7516Google Scholar
  72. 72.
    Yin T, Schendel P, Yang YC (1992) Enhancement of in vivo and in vitro antigen-specific antibody responses by interleukin-11. J Exp Med 175:211–216Google Scholar
  73. 73.
    Pennica D, Shaw TA, Swanson MW, Moore DL, Sjelton KA, Zioncheck A, Rosenthal A, Taga T, Paoni NF, Wood WI (1995) Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J Biol Chem 270:10915–10922Google Scholar
  74. 74.
    Metcalf D (1989) Actions and interactions of G-CSF, LIF, and IL-6 on normal and leukemia murine cells. Leukemia 3:349–355Google Scholar
  75. 75.
    Rose TM, Bruce AG (1991) Oncostatin M is a member of a cytokine family which includes leukemia inhibitory factor, granulocyte colony-stimulatory factor and interleukin-6. Proc Natl Acad Sci USA 88:8641–8645Google Scholar
  76. 76.
    Musashi M, Yang YC, Paul SR, Clark SC, Sudo T, Ogawa M (1991) Direct and synergistic effects of interleukin-11 on murine hemopoiesis in culture. Proc Natl Acad Sci USA 88:765–769Google Scholar
  77. 77.
    Leary AG, Zeng HQ, Clark SC, Ogawa M (1992) Growth factor requirements for survival in GO and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci USA 89:4013–4017Google Scholar
  78. 78.
    Baumann H, Onorato V, Gauldie J, Jahreis GP (1987) Distinct sets of acute phase plasma proteins are stimulated by separate human hepatocyte-stimulating factors and monokines in rat hepatoma cells. J Biol Chem 262:9756–9768Google Scholar
  79. 79.
    Baumann H, Wong GG (1989) Hepatocyte-stimulatory factor III shares structural and functional identity with leukemia inhibitory factor. J Immunol 143:1163–1167Google Scholar
  80. 80.
    Richards CD, Brown TJ, Shoyab M, Baumann H, Gauldie J (1992) Recombinant oncostatin M stimulates the production of acute phase protein in HepG2 cells and rat primary hepatocytes in vitro. J Immunol 148:1731–1736Google Scholar
  81. 81.
    Baumann H, Schendel P (1991) Interleukin 11 regulates the hepatic expression of the same plasma protein genes as interleukin-6 J Biol Chem 266:20424–20427Google Scholar
  82. 82.
    Patterson PH, Nawa H (1993) Neuronal differentiation factors/cytokines and synaptic plasticity. Cell 72:123–137Google Scholar
  83. 83.
    Powers R, Garrett DS, March CJ, Frieden EA, Gronenborn AM, Clore GM (1992) Three-dimensional solution structure of human interleukin-4 by multidimensional heteronuclear magnetic resonance spectroscopy. Science 256:1673–1677Google Scholar
  84. 84.
    Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T, Kishimoto T (1988) Cloning and expression of the human interleukin-6 (BSF-2/IFNβ2) receptor. Science 241:825–828Google Scholar
  85. 85.
    Hatakeyama M, Tsudo M, Minamoto S, Kono T, Doi T, Miyata T, Miyasaka M, Taniguchi T (1989) Interleukin-2 receptor (3 chain gene: generation of three receptor forms by cloned human α and β chain cDNA's). Science 244: 551–556Google Scholar
  86. 86.
    Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K (1992) Cloning of the γ chain of the human IL-2 receptor. Science 257:379–382Google Scholar
  87. 87.
    D'Andrea AD, Lodish HF, Wong GG (1989) Expression cloning of the murine erythropoietin receptor. Cell 57: 277–285Google Scholar
  88. 88.
    Itoh N, Yonehara S, Schreurs J, Gorman DM, Maruyama K, Ishii A, Yahara I, Arai K, Miyajima A (1990) Cloning of an interleukin-3 receptor gene: A member of a distinct receptor gene family. Science 247:324–327Google Scholar
  89. 89.
    Mosley B, Beckmann MP, March CJ, Idzerda RL, Gimpel SD, VandenBos T, Friend D, Alpert A, Anderson D, Jackson J, Wigall JM, Smith C, Gallis B, Sims JE, Urdal D, Widmer MB, Cosman D, Park LS (1989) The murine interleukin-4 receptor: molecular cloning and characterization of secreted and membrane bound forms. Cell 59:335–348Google Scholar
  90. 90.
    Takaki S, Tominaga A, Hitoshi Y, Mita S, Sonoda E, Yamaguchi N, Takatsu K (1990) Molecular cloning and expression of the murine interleukin-5 receptor. EMBO J 9:4367–4374Google Scholar
  91. 91.
    Gearing DP, King JA, Gough NM, Nicola NA (1989) Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8:3667–3676Google Scholar
  92. 92.
    Goodwin RG, Friend D, Ziegler SF, Jerzy R, Fald BA, Gimpel S, Cosman D, Dower SK, March CJ, Namen AE, Park LS (1990) Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell 60:941–951Google Scholar
  93. 93.
    Fukunaga R, Ishizaka-Ikeda E, Seto Y, Nagata S (1990) Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell 61:341–350Google Scholar
  94. 94.
    Renauld J-C, Druez C, Kermouni A, Houssiau F, Uyttenhove C, Van Roost E, Van Snick J (1992) Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc Natl Acad Sci USA 89:5690–5694Google Scholar
  95. 95.
    Chua AO, Chizzonite R, Desai BB, Truitt TP, Nunes P, Minetti LJ, Warrier RR, Presky DH, Levine JF, Gately MK, Gubler U (1994) Expression cloning of a human IL-12 receptor component. J Immunol 153:128–136Google Scholar
  96. 96.
    Giri JG, Ahdieh M, Eisenman J, Shanebeck K, Grabstein K, Kumaki S, Namen A, Park LS, Cosman D, Anderson D (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13:2822–2830Google Scholar
  97. 97.
    Gearing DP, Thut CJ, VandenBos T, Gimpel SD, Delaney PB, King J, Price V, Cosman D, Beckman MP (1991) Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J 10:2839–2848Google Scholar
  98. 98.
    Davis S, Aldrich TH, Valenzuela DM, Wong V, Furth ME, Bianco SM, Furth ME, Squinto SP, Yancopoulos GD (1991) The receptor for ciliary neurotrophic factor. Science 253:59–63Google Scholar
  99. 99.
    Bazan JF (1989) A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-6 receptorchain. Biochem Biophys Res Commun 164:788–795Google Scholar
  100. 100.
    Sugita T, Totsuka T, Saito M, Yamasaki K, Taga T, Hirano T, Kishimoto T (1990) Functional murine IL-6 receptor with the intracisternal A-particle gene product at its cytoplasmic domain: Its possible role in plasmacytomagenesis. J Exp Med 171:2001–2009Google Scholar
  101. 101.
    Paonessa G, Graziani R, Serio AD, Svio R, Ciappori L, Lahm A, Salvati AL, Tniatti C, Ciliberto G (1995) Two distinct and independent sites on IL-6 trigger gp130 dimer formation and signalling. EMBO J 14:1942–1951Google Scholar
  102. 102.
    Squinto SP, Aldrich TH, Lindsay RM, Morrissey DM, Panayotatos N, Bianco SM, Furth ME, Yancopoulos GD (1990) Identification of functional receptors for ciliary neurotrophic factor on neuronal cell lines and primary neurons. Neuron 5:757–766Google Scholar
  103. 103.
    Modrell B, Liu J, Miller H, Shoyab M (1994) LIF and OM directly interact with a soluble form of gp130, the IL-6 receptor signal transduction subunit. Growth Factors 11:81–91Google Scholar
  104. 104.
    Gearing DP, Bruce AG (1992) Oncostatin M binds the highaffinity leukemia inhibitory factor receptor. New Biol 4:61–65Google Scholar
  105. 105.
    Liu J, Modrell B, Aruffo S, Scharnowske S, Shoyab M (1994) Interaction between oncostatin M and IL-6 signal transducer, gp130. Cytokine 6:272–278Google Scholar
  106. 106.
    Hayashida K, Kitamura, German DM, Aral K-I, Yokota T, Miyajima A (1990) Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high affinity GM-CSF receptor. Proc Natl Acad Sci USA 87:9655–9659Google Scholar
  107. 107.
    Kitamura T, Sato N, Arai K, Miyajima A (1991) Expression cloning of the human IL-3 receptor cDNA reveals a shared β subunit for human IL-3 and GM-CSF receptor. Cell 66:1165–1174Google Scholar
  108. 108.
    Tavernier J, Devos R, Cornelis S, Tuypens T, Van der Heyden J, Fier W, Plaetinck G (1991) A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific α chain and a β chain shared with the receptor for GM-CSF. Cell 66:1175–1184Google Scholar
  109. 109.
    Takaki S, Mita S, Kitamura T, Yonehara S, Yamaguchi N, Tominaga A, Miyajima A, Takatsu K (1991) Identification of the second subunit of the murine interleukin-5 receptor: interleukin-3 receptor-like protein, AIC2B is a component of the high affinity interleukin-5 receptor. EMBO J 10:2833–2838Google Scholar
  110. 110.
    Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S, Arai K (1993) Sharing of the interleukin-2(IL-2) receptor γ chain between receptors for IL-2 and IL-4. Science 262: 1874–1877Google Scholar
  111. 111.
    Noguchi M, Nakamura Y Russell, SM, Ziegler SF, Tsang M, Cao X, Leonard WJ (1993) Interleukin-2 receptor γ chain: a functional component of the Interleukin-7 receptor. Science 262:1877–1880Google Scholar
  112. 112.
    Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P, Friedmann MC, Miyajima A, Puri RK, Paul WE, Leonard WJ (1993) Interleukin-2 recepter γ chain: a functional component of the Interleukin-4 receptor. Science 262:1880–1883Google Scholar
  113. 113.
    Taniguchi T (1995) Cytokine signaling through nonreceptor protein tyrosine kinase. Science 268:251–255Google Scholar
  114. 114.
    Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perrussia B, Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827–845Google Scholar
  115. 115.
    Gearing DP, Cosman D (1991) Homology of the p40 subuniot of natural killer cell stimulatory factor (NKSF) with the extracellular domain of the interleukin-6 receptor. Cell 66:9–10Google Scholar
  116. 116.
    Davis S, Aldrich TH, Ip NY, Stahl N, Scherer S, Farruggella T, DiStefano PS, Curtis R, Panayotatos N, Gascan H, Chevalier S, Yancopoulos GD (1993) Released form of CNTF receptor α components as a soluble mediator of CNTF responses. Science 259:1736–1739Google Scholar
  117. 117.
    Koyasu S, Tojo A, Miyajima A, Akiyama T, Kasuga M, Urabe A, Schreurs J, Arai K, Takaku F, Yahara I (1987) Interleukin 3-specific tyrosine phosphorylation of a membrane glycoprotein of Mr 150,000 in multi-factor-dependent myeloid cell lines. EMBO J 6:3979–3984Google Scholar
  118. 118.
    Morla AO, Schreurs J, Miyajima A, Wang JYJ (1988) Hematopoietic groeth factors activate the tyrosine phosphorylation of distinct sets of proteins in interleukin-3-dependent murine cell lines. Mol Cell Biol 8:2214–2218Google Scholar
  119. 119.
    Isfort R, Abraham R, Hurn RD, Frekelton AR, Ihle JN (1988) Stimulation of factor-dependent myeloid cell lines with interleukin 3 induces tyrosine phosphorylation of several cellular substrates. J Biol Chem 264:19203–19209Google Scholar
  120. 120.
    Nakajima K, Wall R (1991) Interleukin-6 signals activating junB and TIS11 gene transcription in a B-cell hybridoma. Mol Cell Biol 11:1409–1418Google Scholar
  121. 121.
    Lord FA, Abdollahi A, Thomas SM, DeMarco M, Brugge JS, Hoffman-Liebermann B, Liebermann DA (1991) Leukemia inhibitory factor and interleukin-6 trigger the same immediate early response, including tyrosine phosphorylation, upon induction of myeloid leukemia differentiation. Mol Cell Biol 11:4371–4379Google Scholar
  122. 122.
    Mills G, May C, McGill M, Fung M, Baker M, Sutherland R, Greene WC (1990) Interleukin 2-induced tyrosine phosphorylation. J Biol Chem 265:3561–3567Google Scholar
  123. 123.
    Quelle FW, Wojchowski DM (1991) Proliferative action of erythropoietin is associated with rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells. J Biol Chem 266:609–614Google Scholar
  124. 124.
    Yin T, Miyazawa K, Yang Y-C (1992) Characterization of interleukin-11 receptor and protein tyrosine phosphorylation induced by interleukin-11 in mouse 3T3-L1 cells. J Biol Chem 267:8347–8351Google Scholar
  125. 125.
    Minami Y, Nakagawa Y, Kawahara A, Miyazaki T, Sada K, Yamamura H, Taniguchi T (1995) Protein tyrosine kinase Syk is associated with and activated by the IL-2 receptor: possible link with the c-myc induction pathway. Immunity 2:89–100Google Scholar
  126. 126.
    Murakami M, Narazaki M, Hibi M, Yawata H, Yasukawa K, Hamaguchi M, Taga T, Kishimoto T (1991) Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci USA 88:11349–11353Google Scholar
  127. 127.
    Lutticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Yasukawa K, Taga T, Kishimoto T, Barbieri G, Pellegrini S, Sendtner M, Heinrich PC, Horn F (1993) Association of transcription factor APRF and protein kinase Jakl with the interleukin-6 signal transducer gp130. Science 263:89–92Google Scholar
  128. 128.
    Stahl N, Boulton TG, Farruggella T, Ip NY, Davis S, Witthuhn BA, Quelle FW, Silvernnoinen O, Barbieri G, Pellgrini S, Ihle JN, Yancopoulos GD (1993) Association and activation of Jak/Tyk kinases by CNTF/LIF/OSM/IL-6 β receptor components. Science 263:92–95Google Scholar
  129. 129.
    Matsuda T, Yamanaka Y, Hirano T (1994) Interleukin-6-induced tyrosine phophorylation of multiple proteins in murine hematopoietic lineage cells. Biochem Biophys Res Commun 200:821–828Google Scholar
  130. 130.
    Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN (1993) Jak2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74:227–236CrossRefPubMedGoogle Scholar
  131. 131.
    Argetsinger LS, Campbell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, Carter-Su C (1993) Identification of Jak2 as a growth hormone receptor-associated tyrosine kinase. Cell 74:237–244Google Scholar
  132. 132.
    Silvennoine O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN (1993) Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 90:8429–8433Google Scholar
  133. 133.
    Miyazaki T, Kawahara A, Fuji H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, Taniguchi T (1994) Functional activation of Jakl and Jak3 by selective association with IL-2 receptor subunits. Science 286:1045–1047Google Scholar
  134. 134.
    Muller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silennoinen O, Harpur AG, Barbieri G, Witthuhn BA, Schindler C, Pellegrini S, Wilks AF, Ihle JN, Stark GR, Kerr IM (1993) the protein tyrosine kinase Jakl complements defects in interferon-α/β and -γ signal transduction. Nature 366: 129–135Google Scholar
  135. 135.
    Guschin D, Rogers N, Briscoe J, Witthuhn B A, Wathing D, Horn F, Pellegrini S, Yasukawa K, Heinrich P, Stark GR, Ihle JN, Kerr IM (1995) A major role for the protein kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J 14:1421–1429Google Scholar
  136. 136.
    Fukunaga R, Ishizaka-Ikeda E, Pan CX, Seto Y, Nagata S (1991) Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J 10:2855–2865Google Scholar
  137. 137.
    Colosi P, Wong K, Leong SR, Wood WL (1993) Mutational analysis of the intracellular domain of the human growth hormone receptor. J Biol Chem 268:12617–12623Google Scholar
  138. 138.
    Hatakeyama M, Mori H, Doi T, Taniguchi T (1989) A restricted cytoplasmic region of IL-2 receptor beta chain is essential for growth signal transduction but not for ligand binding and internalization. Cell 59:837–845Google Scholar
  139. 139.
    D'Andrea AD, Yoshimura A, Youssoufian H, Zon LI, Koo JW, Lodish HF (1991) The cytoplasmic region of the erythropoietin receptor contains nonoverlapping positive and negetive growth-regulatory domains. Mol Cell Biol 11:1980–1987Google Scholar
  140. 140.
    Miura O, Cleveland JL, Ihle JN (1993) Inactivation of erytropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol Cell Biol 13:1788–1795Google Scholar
  141. 141.
    Baumann H, Symes AJ, Comeau MR, Morella KK, Wang Y, Friend D, Ziegler SF, Fink JS, Gearing DP (1994) Multiple regions within the cytoplasmic domains of the leukemia inhibitory factor receptor and gp130 cooperate in signal transduction in hepatic and neuronal cells. Mol Cell Biol 14:138–146Google Scholar
  142. 142.
    Ziegler SF, Bird TA, Morella KK, Mosley B, Gearing DP, Baumann H (1993) Distinct regions of the human granulocyte colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Mol Cell Biol 13:2384–2390Google Scholar
  143. 143.
    Stahl N, Farrugella TJ, Boulton TG, Zhong Z, Darnell JE, Yancopoulas G (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267:1349–1353Google Scholar
  144. 144.
    Nakajima K, Kusafuka T, Takeda T, Fujitani Y, Nakae K and Hirano T (1993) Identification of a novel interleukin 6 responsive element containing an Ets-binding site and a CRE-like site in the junB promoter. Mol Cell Biol 13:3027–3041Google Scholar
  145. 145.
    Fujitani Y, Nakajima K, Kojima H, Nakae K, Takeda T, Hirano T (1994) Transcriptional activation of the IL-6 responsive element in the junB promoter is mediated by multiple Stat family proteins. Biochem Biophys Res Commun 202:1181–1187Google Scholar
  146. 146.
    Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL-6) is a member of a C/EBP family. EMBO J 9:1897–1906Google Scholar
  147. 147.
    Baumann H, Morella KK, Campos SP, Cao Z, Jahreis GP (1992) role of CAAT-enhancer binding protein isoforms in the cytokine regulation of acute-phase plasma protein genes. J Biol Chem 267:19744–19751Google Scholar
  148. 148.
    Baumann H, Ziegler SF, Mosley B, Morella KK, Pajovie S, Gearing DP (1993) Reconstitution of the response to leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor in hepatoma cells. J Biol Chem 268:8414–8417Google Scholar
  149. 149.
    Hattori M, Abraham LJ, Northermann W, Fey GH (1990) Acute-phase reaction induces a specific complex between hepatic nuclear proteins and the interleukin 6 response element of the rat alpha 2-macroglobulin gene. Proc Natl Acad Sci USA 87:2364–2368Google Scholar
  150. 150.
    Hocke GM, Barry D, Fey GH (1992) Synergistic action of interleukin-6 and glucocorticoids is mediated by the interleukin-6 responsive element of the rat α2 macroglobulin gene. Mol Cell Biol 12:2282–2294Google Scholar
  151. 151.
    Kunz D, Zimmermann R, Heisig M, Heinrich PC (1989) Identification of the promoter sequences involved in the interleukin-6 dependent expression of the rat α2-macroglobulin gene. Nucleic Acids Res 17:1121–1138Google Scholar
  152. 152.
    Wegenka UM, Buschmann J, Lutticken C, Heinrich PC, Horn F (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 13:276–288Google Scholar
  153. 153.
    Nakajima K, Matsuda T, Fujitani Y, Kojima H, Yamanaka Y, Nakae K, Takeda T, Hirano T (1995) Signal transduction through IL-6 receptor: Involvement of multiple protein kinases, Stat factors, and a novel H7-sensitive pathway. Ann NY Acad Sci 762:55–70Google Scholar
  154. 154.
    Sadowski HB, Shuai K, Darnell JE Jr, Gilman MZ (1993) A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261: 1739–1744Google Scholar
  155. 155.
    Fu XY, Zhang JJ (1993) Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 74:1135–1145Google Scholar
  156. 156.
    Bonni A, Frank DA, Schindler C, Greenberg ME (1993) Characterization of a pathway for ciliary neurotrophic factor signaling to the nucleus. Science 262:1575–1579Google Scholar
  157. 157.
    Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factors p91-related transcriptional factor involved in the gpl30-mediated signaling pathway. Cell 77:63–71Google Scholar
  158. 158.
    Zhong Z, Wen Z, Darnell JE (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98Google Scholar
  159. 159.
    Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S (1995) Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science 267:1990–1994Google Scholar
  160. 160.
    Wen Z, Zhong Z, Darnell JE (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250Google Scholar
  161. 161.
    Horvath CM, Wen Z, Darnell JE (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9:984–994Google Scholar
  162. 162.
    Kojima H, Nakajima K, Hirano T (1996) IL-6-induced complexes on an IL-6 response element of the junB promoter contain Stat3 and 36 kDa CRE-like site binding protein(s). Oncogene (in press)Google Scholar
  163. 163.
    Kumar G, Gupta S, Wang S, Nel AE (1994) Involvement of Janus kinases, p52shc, Raf-1, and MEK1 in the IL-6-induced mitogen-activated protein kinase cascade of a growth responsive B cell line. J Immunol 153:4436–4447Google Scholar
  164. 164.
    Gurney AL, Wong SC, Henzel WJ, Sauvage FJ de, (1995) Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation. Proc Natl Acad Sci USA 92:5292–5296Google Scholar
  165. 165.
    Ernst M, Gearing DP, Dunn Ar (1994) Functional and biochemical association of Hck with the LIF/IL-6 receptor signal transducing subunit gpl30 in embryonic stem cells. EMBO J 13:1574–1584Google Scholar
  166. 166.
    Matsuda T, Takahashi-Tezuka M, Fukada T, Okuyama Y, Funitani Y, Tshukada S, Mano H, Hirai H, Witte ON, Hirano T (1995) Association and activation of Btk and Tec tyrosine kinases by gp130, a signal transducer of the interleukin-6 family of cytokines. Blood 85:627–633Google Scholar
  167. 167.
    Matsuda T, Fukada T, Takahashi-Tezuka M, Okuyama Y, Fujitani Y, Hanazono Y, Hirai H, Hirano T (1995) Activation of Fes tyrosine kinase by gp130, an interleukin-6 family cytokine signal transducer, and their association. J Biol Chem 270:11037–11039Google Scholar
  168. 168.
    Schiemann WP, Graves LM, Baumann H, Morella KK, Gearing DP, Nielsen MD, Krebs EG, Nathanson NM (1995) Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation. Proc Natl Acad Sci USA 92:5361–5365Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Hibi
    • 1
  • K. Nakajima
    • 1
  • T. Hirano
    • 1
  1. 1.Biomedical Research CenterOsaka University Medical SchoolOsakaJapan

Personalised recommendations