Biological sulphate reduction

Abstract

Sulphate is reduced to thiols by micro-organisms and plants and these are incorporated via amino acids into protein. Higher animals however do not utilize sulphate and get their sulphur thiol groups usually from amino acids. Some bacteria also use sulphate as an alternative to oxygen as a hydrogen acceptor. Biochemical evidence suggests that sulphate is first activated by adenosine triphosphate (ATP) before it is reduced. Two sulphur-containing nucleotides, adenosine-5′-phosphosulphate (APS) and adenosine-3′-phosphate 5′ phosphosulphate (PAPS) have been identified as carriers of sulphur in bacteria and in green plants during sulphate reduction. Enzymes associated with sulphate and sulphite reduction in bacteria and in green plants are described in this paper, and ecological and economic aspects of the dissimilation of sulphate by bacteria are also considered.

Zusammenfassung

Bestimmte Mikroorganismen und Pflanzen reduzieren Sulfate zu Thiolen und diese werden über Aminosäuren in Proteine eingebaut. Höhere Tiere verarbeiten kein Sulfat und erhalten ihre Mercaptan-Gruppe gewöhnlich aus Aminosäuren. Einige Bakterien verwenden Sulfate anstelle von Sauerstoff als Wasserstoff-Acceptor. Biochemische Anzeichen sprechen dafür, daß Sulfat durch Adenosintriphosphat bevor es reduziert, aktiviert wird. Zwei schwefelhaltige Nucleotide wurden als Zwischenprodukte der Sulfatreduktion in Bakterien und in grünen Pflanzen identifiziert. Es werden hier Enzyme, die mit der Sulfit-Reduktion in Bakterien und in grünen Pflanzen in Zusammenhang stehen, beschrieben. Ökologische und ökonomische Gesichtspunkte der Sulfatdissimilation durch Bakterien werden erörtert.

This is a preview of subscription content, access via your institution.

References

  1. Abd-El-Malek, Y., and S. G. Rizk: Culture of Desulphovibrio desulphuricans. Nature 185, 635–636 (1960).

    Google Scholar 

  2. Adams, M. E., and J. R. Postgate: On sporulation in sulphate-reducing bacteria. J. Gen. Microbiol. 24, 291–294 (1960).

    Google Scholar 

  3. Asahi, T.: Sulfur metabolism in higher plants. IV. Mechanisms of sulfate reduction in chloroplasts. Biochim. Biophys. Acta 82, 58–66 (1964).

    Google Scholar 

  4. —, R. S. Bandurski, and L. G. Wilson: Yeast sulfate-reducing system. II. Enzymatic reduction of protein disulfide. J. Biol. Chem. 236, 1830–1835 (1961).

    Google Scholar 

  5. Barta, J.: Decontamination of industrial effluents by means of anaerobic continuous action of reducing sulphur bacteria. In International symposium on continuous culture of microorganisms, (Eds. I. Malek, K. Beran, and J. Hospodka) Prague: Czek. Acad. Sci., 391 p., 1962.

    Google Scholar 

  6. —, and E. Hudcova: Factors affecting the degradation of ballast substances from citric acid production by sulphate-reducing bacteria. Folia Microbiol. (Prague) 6, 104–114 (1961).

    Google Scholar 

  7. Basu, S. K., and T. K. Ghose: Bacterial sulphide production from sulphate-enriched spent distillery liquor. II. J. Biochem. Microbiol. Technol. Eng. 3, 181–197 (1961).

    Google Scholar 

  8. Berner, R. A.: Experimental studies of the formation of sedimentary iron sulfides. In: Biogeochemistry of sulfur isotopes (ed. M. L. Jensen). New Haven: Yale Univ. Press, 193 p., 1962.

    Google Scholar 

  9. Booth, G. H.: Sulphur bacteria in relation to corrosion. J. Appl. Bacteriol. 27, 174–181 (1964).

    CAS  PubMed  Google Scholar 

  10. —, A. W. Cooper, and A. K. Tiller: Corrosion of mild steel in the tidal waters of the Thames estuary. I. Results of six-months' and one year's immersion. J. Appl. Chem. (London) 13, 211–220 (1963).

    Google Scholar 

  11. Brüggemann, J., K. Schlossmann, M. Merkenschlager und M. Waldschmidt: Zur Frage des Vorkommens der Serinsulfhydrase. Biochem. Z. 335, 392–399 (1962).

    Google Scholar 

  12. Butlin, K. R., S. C. Selwyn, and D. S. Wakerly: Microbial sulphide production from sulphate-enriched sewage sludge. J. Appl. Bacteriol. 23, 158–168 (1960).

    Google Scholar 

  13. Campbell, L. L., and J. R. Postgate: Classification of rhe spore-forming sulphate-reducing bacteria. Bacteriol Rev. 29, 359–363 (1965).

    Google Scholar 

  14. Cowie, D. B., E. T. Bolton, and M. K. Sands: Sulfur metabolism in Escherichia Coli. II. Competitive utilization of labelled and non-labelled sulfur sompounds. J. Bacteriol. 62, 63–74 (1951).

    Google Scholar 

  15. Dostalek, M.: Bacterial release of oil. III. Areal distribution of the effect of nutrient injection into the deposit. Folia Microbiol. (Prague) 6, 10–17 (1961).

    Google Scholar 

  16. Dreyfuss, J., and K. J. Monty: The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium. J. Biol. Chem. 238, 1019–1024 (1963).

    Google Scholar 

  17. Freke, A. M., and D. Tate: Formation of magnetic iron sulphide by bacterial reduction of iron solutions. J. Biochem. Microbiol. Technol. Eng. 3, 29–39 (1961).

    Google Scholar 

  18. Genovese, S.: The distribution of the H2S in the Lake of Faro (Messina) with particular regard to the presence of Red Water. In: Symposium on Marine Microbiology. (Ed. C. H. Oppenheimer) 194–204. Springfield, Illinois: Thomas, 769 p., 1963.

    Google Scholar 

  19. Gregory, J. D., and P. W. Robbins: Metabolism of sulphur compounds (Sulphate metabolism). Ann. Rev. Biochem. 29, 347–364 (1960).

    Google Scholar 

  20. Hedrick, H. G., C. E. Miller, J. E. Halkies, and J. E. Hildebrand: Selection of a microbial corrosion system for studying effects on structural aluminium alloys. Appl. Microbiol. 12, 197–200 (1964).

    Google Scholar 

  21. Hilz, H., und M. Kittler: Enzymatische Reduktion von Sulfat zu Sulfid. Biochim. Biophys. Acta 30, 650–651 (1958).

    Google Scholar 

  22. —, and F. Lipmann: The enzymatic activation of sulfate. Proc. Natl. Acad. Sci. U.S. 41, 880–890 (1955).

    Google Scholar 

  23. Horowitz, N. H.: Biochemical genetics of Neurospora. Biochemical genetics of Neurospora crassa. Advances Genet. 3, 33–71 (1950).

    Google Scholar 

  24. —, In: A Symposium on Amino Acid Metabolism. (Eds. W. D. McElroy and H. B. Glass) Discussion, 631–632. Baltimore: Johns Hopkins Press, 1048 p., 1955.

    Google Scholar 

  25. Ishimoto, M., and T. Yagi: Sulfate-reducing bacteria. IX. Sulfite reductase. J. Biochem. (Tokyo) 49, 103–109 (1961).

    Google Scholar 

  26. Ivanov, M. F.: Microbiological investigation of Carpathian sulphur deposits. I. Mikrobiologiya, 29, 109–113 (1960).

    Google Scholar 

  27. —, Microbiological investigation of Carpathian sulphur deposits. II. Mikrobiologiya. 29, 242–247 (1960).

    Google Scholar 

  28. Jensen, M. L.: Biogenic sulfur and sulfide deposits. In Biogeochemistry of sulfur isotopes. (Ed M. L. Jensen) 1–15. New Haven: Yale Univ. Press, 193 p., 1962.

    Google Scholar 

  29. —, and N. Nakai: Sources and isotopic composition of atmospheric sulphur. Science. 134, 2102–2104 (1961).

    Google Scholar 

  30. Kaplan, J. R., K. O. Emery, and S. C. Rittenburg: The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim Acta. 27, 297–331 (1963).

    Google Scholar 

  31. Lampen, J. O., R. R. Roepke, and M. J. Jones: Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulfur requirements. Arch. Biochem. Biophys. 13, 55–66 (1947).

    Google Scholar 

  32. Lipmann, F.: Biological sulfate activation and transfer. Science. 128, 575–580 (1958).

    Google Scholar 

  33. Ochynski, F. W., and J. R. Postgate: Some biochemical differences between fresh water and salt water strains of sulphate-reducing bacteria: In: Symposium on Marine Microbiology. (C. H. Oppenheimer, Ed.) 426–441. Springfield, Illinois: Thomas 796 p., 1963.

    Google Scholar 

  34. Peck, H. D.: Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulphur compounds in microorganisms. Bacteriol. Rev. 26, 67–94 (1962).

    Google Scholar 

  35. Pipes, W. O.: Sludge digestion by sulphate-reducing bactéia. Purdue Univ. Eng. Bull. Ext. Ser. 105, 308–319 (1960).

    Google Scholar 

  36. Postgate, J. R.: Sulphate reduction by bacteria. Ann. Rev. Microbiol. 13, 505–520 (1959).

    Google Scholar 

  37. — The economic activities of sulphate-reducing bacteria. Progr. Ind. Microbiol. 2, 49–69 (1960).

    Google Scholar 

  38. — Cytochrome C3. In International Symposium on Haematin Enzymes. Pt. 2, 407–414. (Eds. J. E. Falk, R. Lemberg, and R. K. Morton). London: Pergamon Press, 608 p., 1961.

    Google Scholar 

  39. — The Microbiology of corrosion. In: Corrosion, Vol. 1. Corrosion of Metals and Alloys (Ed. L. L. Shrier) 2–51 to 2–64. London: Newnes, 9–54 p., 1963.

    Google Scholar 

  40. — Recent advances in the study of the sulphate-reducing bacteria. Bacteriol. Rev. 29, 425–441 (1965).

    Google Scholar 

  41. Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton, and R. J. Britten: Sulfur Metabolism. In: Studies of Biosynthesis in Escherichia coli, 318–405. Washington: Carnegie Inst. Publ. 607, 521 p., 1955.

    Google Scholar 

  42. Russell, P.: Microbiological studies in realtion to moist groundwood pulp. Chem. Ind. (London) 642–649 (1961).

  43. Schiff, J. A.: Studies of sulfate utilization by algae. II. Further identification of reduced compounds formed from sulfate by Chlorella. Plant Physiol. 39, 176–179 (1964).

    Google Scholar 

  44. Schneider, J. F., and J. Westley: Direct incorporation of thiosulfate sulfur into cysteine by lysed rat liver mitochondria. J. Biol. Chem. 238, PC 3516–3517 (1963).

    Google Scholar 

  45. Senez, J. C.: Role écologique des bacteries sulfat o-reductrices. Pubbl. Staz. Zool. Napoli 32, 427–441 (1962).

    Google Scholar 

  46. — Some considerations on the energetics of bacterial growth. Bacteriol. Rev. 26, 95–107 (1962).

    Google Scholar 

  47. Singer, T. P., and E. B. Kearney: Enzymatic pathways in the degradation of sulfur-containing amino acids. In: A Symposium on Amino Acid Metabolism (Eds. W. D. McElroy and H. B. Glass) 558–590. Baltimore: Johns Hopkins Press, 1048 p., 1955.

    Google Scholar 

  48. Sorokin, Y. I.: Experimental study of bacteria-induced sulphate reduction in the Black Sea using S35. Mikrobiologiya 31, 402–410 (1962).

    Google Scholar 

  49. Starkey, R. L.: Sulfate-reducing bacteria, their production of sulfide and their economic importance. Tappi 44, 493–496 (1961).

    Google Scholar 

  50. Sukow, R., and W. Schwartz: Redox conditions and precipitation of iron and copper in sulphu reta. In: Symposium on Marine Microbiology (Ed. C. H. Oppenheimer) 187–193. Springfield, Illinois: Thomas, 769 p., 1963.

    Google Scholar 

  51. Takawa, K., and D. I. Arnon: Ferridoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 195, 537–541 (1962).

    Google Scholar 

  52. Torii, K., and R. S. Bandursky: A possible intermediate in the reduction of 3′-phosphoryl-5′-adenosine phosphosulfate to sulfite. Biochem. Biophys. Res. Commun. 14, 537–542 (1964).

    Google Scholar 

  53. — R. S. Bandursky Yeast sulfate-reducing system. III. An intermediate in the reduction of 3′-phosphoryl-5′-adenosine phosphosulfate to sulfite. Biochim. Biophys. Acta, 136, 286–295 (1967).

    Google Scholar 

  54. Valentine, R. C., and R. S. Wolfe: Role of ferredoxin in the metabolism of molecular hydrogen. J. Bacteriol. 85, 1114–1120 (1963).

    Google Scholar 

  55. Wilson, L. G.: Metabolism of sulfate: Sulfate reduction. Ann. Rev. Plant Physiol. 13, 201–224 (1962).

    Google Scholar 

  56. —, T. Asahi, and R. S. Bandurski: Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite. J. Biol. Chem. 236, 1822–1829 (1961).

    Google Scholar 

  57. —, and R. S. Bandurski: Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J. Biol. Chem. 233, 975–981 (1958).

    Google Scholar 

  58. Wood, E. C.: Some chemical and bacteriological aspects of East Anglian waters. Proc. Soc. Water Treat. Exam. 10, 82–90 (1961).

    Google Scholar 

  59. Zobell, C. E.: The ecology of sulfate-reducing bacteria. In: Sulfate reducing bacteria, their relation to the secondary recovery of oil, 1–24. New York: St. Bonaventure Univ. 1958.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nicholas, D.J.D. Biological sulphate reduction. Mineral. Deposita 2, 169–180 (1967). https://doi.org/10.1007/BF00201913

Download citation

Keywords

  • Hydrogen
  • Enzyme
  • Sulphate
  • Nucleotide
  • Adenosine