Human Genetics

, Volume 86, Issue 4, pp 331–340 | Cite as


  • Masana Ogata
Review Article


The abnormalities in acatalasemia at the gene level as well as properties of the residual catalase in Japanese acatalasemia are historically reviewed. The replacement of the fifth nucleic acid, guanine, in the fourth intron by adenine in the acatalasemic gene causes a splicing mutation and hence a deficiency of mRNA. The guanine-to-adenine substitution was detected in two Japanese acatalasemic cases from different families. The properties of the residual catalase are similar to those of normal catalase; the exons are identical. The properties of the residual catalase and the molecular defect in the catalase gene are compared among Japanese, Swiss, and mouse acatalasemias. The physiological role of catalase, as judged from human acatalasemic blood and acatalasemic mice, is also described.


Internal Medicine Nucleic Acid Catalase Metabolic Disease Adenine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi H, Cantz M (1966) Über die cellulare Verteilung der Katalase im Blut Homozygoter und Heterozygoter (Akatalasia). Humangenetik 3:50–63.Google Scholar
  2. Aebi H, Wyss SR (1978) Acatalasemia. In: Stanbury JB, Wyngaarden JB, Fredrickson S (eds) The metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York, pp 1792–1807.Google Scholar
  3. Aebi H, Heiniger JP, Butler R, Hassig A (1961) Two cases of acatalasia in Switzerland. Experientia 17:466.Google Scholar
  4. Aebi H, Jeunet F, Richterich R, Suter H, Butler R, Frei J, Marti HR (1962/63) Observations in two Swiss families with acatalasemia I. Enzymol Biol Clin 2:1–22.Google Scholar
  5. Aebi H, Baggiolini M, Dewald B, Lauber E, Suter H, Micheli A, Frei J (1964) Observations in two Swiss families with acatalasia II. Enzymol Biol Clin 4:121–151.Google Scholar
  6. Aebi H, Bossi E, Cantz M, Matsubara S, Suter H (1968) Acatalasemia in Switzerland. In: Beutler E (ed) Hereditary disorders of erythrocyte metabolism, vol 1. Grune & Stratton, New York, pp 41–65.Google Scholar
  7. Aebi H, Sonja R, Wyss, Scherz B, Gross B (1976) Properties of erythrocyte catalase from homozygotes and heterozygotes for Swiss-type acatalasemia. Biochem Genet 14:791–807.Google Scholar
  8. Aebi H, Wyss SR, Scherz B (1977) Unstable mutants and molecular hybrids in enzyme deficiency conditions. Acta Biol Med Ger 36:735–741.Google Scholar
  9. Agar NS, Sadrzadeh SMH, Hallaway PE, Eaton JW (1986) Erythrocyte catalase: a somatic oxidant defense? J Clin Invest 77:319–321.Google Scholar
  10. Allen DW, Cadman S, McCann SF, Finkel B (1977) Increased membrane binding of erythrocyte catalase in hereditary spherocytosis and in metabolically stressed normal cells. Blood 49:113–123.Google Scholar
  11. Atweh GF, Wong C, Reed R, Antonarakis SE, Zhu D, Ghosh PK, Maniatis T, Forget BG, Kazazian HH (1987) A new mutation in IVS-1 of the human globin gene causing β-thalassemia due to abnormal splicing. Blood 70:147–151.Google Scholar
  12. Baur EW (1963) Catalase abnormality in a Caucasian family in the United States. Science 140:816–817.Google Scholar
  13. Chance B, Oshino N (1971) Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J 122:225–233.Google Scholar
  14. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.PubMedGoogle Scholar
  15. Crawford DR, Mirault ME, Moret R, Zbinden I, Cerutti PA (1988) Molecular defect in human acatalasemia fibroblasts. Biochem Biophys Res Commun 153:59–66.Google Scholar
  16. Delgado W, Calderon R (1979) Acatalasemia in two Peruvian siblings. J Oral Pathol 8:358–368.Google Scholar
  17. Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357.PubMedGoogle Scholar
  18. Eaton JW (1989) Acatalasemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, part II, 6th edn. McGraw-Hill, New York, pp 1551–1561.Google Scholar
  19. Fearon ER, Vogelstein B, Feinberg AP (1984) Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature 309:176–178.Google Scholar
  20. Feinstein RN (1949) Perborate as substrate in a new assay of catalase. J Biol Chem 180:1197–1202.Google Scholar
  21. Feinstein RN, Seaholm JE, Howard JB, Russell WL (1964) Acatalasemic mice. Proc Natl Acad Sci USA 52:661–662.Google Scholar
  22. Feinstein RN, Howard JB, Braun JT, Seaholm JE (1966) Acatalasemic and hypocatalasemic mouse mutants. Genetics 53:923–933.Google Scholar
  23. Feinstein RN, Braun JT, Howard JB (1967) Acatalasemic and hypocatalasemic mouse mutants. II. Mutational variations in blood and solid tissue catalase. Arch Biochem Biophys 120:165–169.Google Scholar
  24. Gross J, Scherz B, Wyss S, Kunzel W, Maiwald HJ, Hartwig A, Polster H (1977) Charakterisierung der Katalase roter Blutzellen eines Patienten mit den Symptomen einer Takahara-Krank-heit. Acta Biol Med Ger 36:793–795.Google Scholar
  25. Jacob HS, Ingbar SH, Jandl JH, Bell SC (1965) Oxidative hemolysis and erythrocyte metabolism in hereditary acatalasia. J Clin Invest 44:1187–1199.Google Scholar
  26. Keilin D, Hartree EF (1954) Reactions of methaemoglobin and catalase with peroxides and hydrogen donors. Nature 173:720–723.Google Scholar
  27. Kirkman HN, Gaetani GF (1984) A tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci USA 81:4343–4347.Google Scholar
  28. Korneluk RG, Quan F, Lewis WH, Guise KS, Willard HF, Holmes MT, Gravel RA (1984) Isolation of human fibroblast catalase cDNA clones. J Biol Chem 259:13819–13823.Google Scholar
  29. Krooth RS, Howell RR, Hamilton HB (1962) Properties of acatalasemic cells growing in vitro. J Exp Med 115:313–328.Google Scholar
  30. Lapoumeroulie C, Acuto S, Rouabhi F, Labie D, Krishnamoorthy R, Band A (1987) Expression of a β-thalassemia gene with abnormal splicing. Nucleic Acids Res 15:8195–8204.Google Scholar
  31. Lewis WH (1985) Establishment of mouse cell lines homozygous for temperature-sensitive mutation in catalase gene. Somat Cell Mol Genet 11:319–324.Google Scholar
  32. Matsubara S, Suter H, Aebi H (1967) Fractionation of erythrocyte catalase from normal, hypocatalatic and acatalatic humans. Humangenetik 4:29–41.Google Scholar
  33. Narahara K, Kikkawa K, Kimura S, Kimoto H, Ogata M, Kasai R, Hamawaki K, Matsuoka K (1984) Regional mapping of catalase and Wilms tumor aniridia, genitourinary abnormalities, and mental retardation triad loci to the chromosome segment 11p1305–1306. Humangenetik 6:181–185.Google Scholar
  34. Nakamura H, Yoshiya M, Kaziro K, Kikuchi G (1952) On “Anenzyima catalasea”, a new type of constitutional abnormality. Proc Jpn Acad 28:59–64.Google Scholar
  35. Niikawa N, Fukushima Y, Taniguchi N, Iizuka S, Kajii T (1982) Chromosome abnormalities involving 11p13 and low erythrocyte catalase activity. Hum Genet 60:373–375.Google Scholar
  36. Ogata M, Aikoh H (1984) Mechanism of metallic mercury oxidation in vitro by catalase and peroxidase. Biochem Pharmacol 33:490–493.Google Scholar
  37. Ogata M, Meguro T (1986) Foetal distribution of inhaled mercury vapor in normal and acatalasemic mice. Physiol Chem Phys Med NMR 18:165–170.Google Scholar
  38. Ogata M, Meguro T (1990) Effect of enzyme deficiency on biological exposure monitoring. A toxicogenetic study of acatalasemia. In: Fiserova-Bergerova V, Ogata M (eds) Biological monitoring of exposure to industrial chemicals. ACGIH, Cincinnati, Ohio, pp 149–154.Google Scholar
  39. Ogata M, Mizugaki J (1978) Residual catalase in Japanese type acatalasemia. Cell Struct Funct 3:279–292.Google Scholar
  40. Ogata M, Satoh Y (1988) Isoelectric focusing of catalase from acatalasemic mouse and human blood, and cultured human skin fibroblasts. Electrophoresis 9:128–131.Google Scholar
  41. Ogata M, Takahara S (1963) Quantitative precipitin studies on catalase protein in hemolysate and acetone extract from acatalasemia and hypocatalasemia. Proc Jpn Acad 39:783–788.Google Scholar
  42. Ogata M, Sadamoto M, Takahara S (1966) On minimal catalatic activity in Japanese acatalasemic blood. Proc Jpn Acad 42:828–832.Google Scholar
  43. Ogata M, Inoue T, Tomokuni K, Takahara S (1970) Catalase activity of immature and mature red cells from acatalasemic mutant. Acta Haematol (Basel) 44:11–20.Google Scholar
  44. Ogata M, Hayashi S, Takahara S (1971) Estimation of the frequency of the recessive gene of acatalasemia in Japan. Acta Med Okayama 25:193–198.Google Scholar
  45. Ogata M, Tomokuni K, Watanabe S, Osaki H, Sadamoto M, Takahara S (1972) Residual catalase in the blood of Japanese acatalasemia. Tohoku J Exp Med 107:105–114.Google Scholar
  46. Ogata M, Mizugaki J, Takahara S (1974) Catalase activity in the organs of Japanese acatalasemias. Tohoku J Exp Med 111: 97–98.Google Scholar
  47. Ogata M, Takehisa T, Mizugaki J, Takahara S (1975) Glutathione peroxidase in the red cells of Japanese acatalasemic blood. Jpn J Hum Genet 19:325–333.Google Scholar
  48. Ogata M, Mizugaki J, Takeda K, Takahara S (1977a) Activities of catalase in leucocytes and glucose-6-phosphate dehydrogenase in erythrocytes of hypocatalasemia and acatalasemia. Tohoku J Exp Med 122:93–97.Google Scholar
  49. Ogata M, Mizugaki J, Ueda K, Ikeda M (1977b) Activities of Superoxide dismutase and glutathione peroxidase in the red cells of Japanese acatalasemia blood. Tohoku J Exp Med 123:95–98.Google Scholar
  50. Ogata M, Ikeda M, Sugata Y (1979) In vitro mercury uptake by human acatalasemic erythrocytes. Arch Environ Health 34:218–221.Google Scholar
  51. Ogata M, Matsuda A, Meguro T, Aikoh H (1987a) Metallic mercury in the arterial blood of normal and acatalasemic mice exposed to metallic mercury vapor. Physiol Chem Phys Med NMR 19:79–82.Google Scholar
  52. Ogata M, Satoh M, Meguro T, Fujii Y, Krishna UK, Kogashiwa M (1987b) Acatalasemia: new aspects of study on peroxisome disease (abstract). 4th International Congress of Inborn Errors of Metabolism Satellite Symposium, Hakone, p 8 (A-1).Google Scholar
  53. Ogata M, Fujii Y, Meguro T, Kira S, Matsuda A, Izushi F, Kimoto T, Takahara S (1987c) The level and stability of residual catalase in cultured acatalasemic skin fibroblasts. Acta Med Okayama 41:201–204.Google Scholar
  54. Ogata M, Satoh Y (1988) Isoelectric focusing of catalase from acatalasemic mouse and human blood, and cultured human skin fibroblasts. Electrophoresis 9:128–131.Google Scholar
  55. Ogata M, Suzuki K, Satoh Y (1989) Characterization of human residual catalase of an acatalasemic patient by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by electrophoretic blotting and immunodetection. Electrophoresis 10:194–198.Google Scholar
  56. Ohkura K, Miyashita T, Nakajima H, Matsumoto H, Matsumoto K, Rahabar H, Hedayat S (1984) Distribution of polymorphic traits in Mazandaranian and Guilanian in Iran. Hum Hered 34:27–39.Google Scholar
  57. Sadamoto M (1966) Nature of cultured cells of the skin from acatalasemic individuals with Takahara's disease. Acta Med Okayama 20:193–196.Google Scholar
  58. Shaffer JB, Suttone RB, Bewley GC (1987) Isolation of a cDNA clone for murine catalase and analysis of an acatalasemic mutant. J Biol Chem 262:12908–12911.Google Scholar
  59. Srivastava SK, Ansari NH (1980) The peroxidatic and catalatic activity of catalase in normal and acatalasemic mouse liver. Biochim Biophys Acta 633:317–322.Google Scholar
  60. Szeinberg A, Vries A de, Pinkhas J, Dialdetti M, Ezra R (1963) A dual hereditary red blood cell defect in one family: hypocatalasemia and glucose-6-phosphate dehydrogenase deficiency. Acta Genet Med Gemellol (Roma) 12:247–255.Google Scholar
  61. Takahara S (1968) Acatalasemia in Japan. In: Beutler E (ed) Hereditary disorders of erythrocyte metabolism, vol 1. Grune & Stratton, New York, pp 21–39.Google Scholar
  62. Takahara S, Miyamoto H (1948) Clinical and experimental studies on the odontogenous progressive necrotic ostitis due to lack of blood catalase (in Japanese). J Otorhinol Soc Jpn 51:163–164.Google Scholar
  63. Takahara S, Ogata M (1977) Metabolism in Japanese acatalasemia with special reference to superoxide dismutase and glutathione peroxidase. In: Hayaishi O, Asada K (eds) Biochemical and medical aspects of active oxygen. University of Tokyo Press, Tokyo, pp 275–292.Google Scholar
  64. Takahara S, Ogata M (1978) Erythrocyte metabolism against oxidation in Japanese acatalasemia. Hum Hered 10:205–211.Google Scholar
  65. Takahara S, Hamilton HB, Neet JV, Kobara TY, Ogura Y, Nishimura ET (1960) Hypocatalasemia, a new genetic carrier state. J Clin Invest 39:610–619.Google Scholar
  66. Taylor EH, Haut A (1967) Hypocatalasemia in two American men. Clin Res 15:289.Google Scholar
  67. Thorup OA, Carpenter J, Howard P (1964) Human erythrocyte catalase: demonstration of heterogeneity and relationship to erythrocyte aging in vivo. Br J Haematol 10:542–550.Google Scholar
  68. Tottori Y (1987) Activity and stability of catalase in the organs of acatalasemic mice: comparison of activities at different incubating temperatures by the perborate methods (in Japanese). Okayama Igakkai Zasshi 99:1623–1632.Google Scholar
  69. Treisman R, Orkin SH, Maniatis T (1983) Specific transcription and RNA splicing defects in five cloned β-thalassemia genes. Nature 302:591–596.Google Scholar
  70. Vatsis KP, Schulman MP (1973) Absence of ethanol metabolism in “acatalasemic” hepatic microsomes that oxidize drugs. Biochem Biophys Res Commun 52:588–594.Google Scholar
  71. VanHeyningen V, Boyd AP, Seawright A, Fletcher JM, Fantes JA, Buckton KE, Spowart G, Porteous DJ, Hill RE, Newton MS, Hastie ND (1985) Molecular analysis of chromosome 11 deletion in aniridia-Wilms tumor syndrome. Proc Natl Acad Sci USA 82:8592–8596.Google Scholar
  72. Wen JK, Osumi T, Hashimoto T, Ogata M (1988) Diminished synthesis of catalase due to the decrease in catalase mRNA in Japanese-type acatalasemia. Physiol Chem Phys Med NMR 20:171–176.Google Scholar
  73. Wen JK, Osumi T, Hashimoto T, Ogata M (1990) Molecular analysis of human acatalasemia: identification of a splicing mutation. J Mol Biol 211:383–393.Google Scholar
  74. Wyss SR, Aebi H (1974) Properties of leukocyte catalase from normal and acatalasemic humans. Experientia 30:863–864.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Masana Ogata
    • 1
  1. 1.Department of Public HealthOkayama University Medical SchoolOkayama CityJapan

Personalised recommendations