Human Genetics

, Volume 87, Issue 6, pp 642–648 | Cite as

The human transmembrane secretory component (poly-Ig receptor): molecular cloning, restriction fragment length polymorphism and chromosomal sublocalization

  • P. Krajči
  • K. H. Grzeschik
  • A. H. M. Geurts van Kessel
  • B. Olaisen
  • P. Brandtzaeg
Original Investigations

Summary

The human transmembrane secretory component (SC) mediates glandular translocation of polymeric IgA and IgM into exocrine secretions. A 2898-bp cDNA clone, encoding the entire sequence of the human transmembrane SC, was isolated from a colonic adenocarcinoma cell line cDNA library. The deduced amino-acid sequence had a length of 764 residues and showed an overall similarity of 56% and 64% with the rabbit and rat counterpart, respectively. A restriction fragment length polymorphism (RFLP) was found with PvuII, revealing a two-alle RFLP with an autosomal codominant inheritance pattern and allele frequencies of 0.65 and 0.35. Southern blot analysis of human-rodent somatic hybrid panels, including hybrids with translocation chromosomes carrying different parts of chromosome 1, assigned the SC gene to 1q31-q42, thus confirming a previously reported provisional assignment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balazs I, Purrello M, Kurnite DM, Grzeschik K-H, Siniscalco M (1984) Isolation and characterization of human random cDNA clones homologous to DNA from the X chromosome. Somatic Cell Mol Genet 10:385–397Google Scholar
  2. Banting G, Brake B, Braghetta P, Luzio PJ, Stanley KK (1989) Intracellular targetting signals of polymeric immunoglobulin receptors are highly conserved between species. FEBS Lett 254:1771–1783Google Scholar
  3. Barneveld R, Keijzer W, Tegelaers FP, Ginns EI, Geurts van Kessel A, Brady RO, Barranger JA, Tager JM, Galjaard H (1983) Assignment of the gene coding for human β-glucocerebrosidase to the region q21–q31 of chromosome 1 using monoclonal antibodies. Hum Genet 64:227–231Google Scholar
  4. Botstein D, White RL, Skolnic M, Davis RW (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331Google Scholar
  5. Brandtzaeg P (1974) Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252:418–420Google Scholar
  6. Brandtzaeg P (1985) Role of J chain and secretory component in receptormediated glandular and hepatic transport of immunoglobulins in man. Scand J Immunol 22:111–146Google Scholar
  7. Brandtzaeg P, Baklien K (1977) Intestinal secretion of IgA and IgM: a hypothetical model. In: Immunology of the gut. (Ciba Foundation Symposium 46) Elsevier/Excerpta Medica North-Holland, pp 77–113Google Scholar
  8. Brandtzaeg P, Prydz H (1984) Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulin. Nature 311:71–73Google Scholar
  9. Brito-Babapulle V, Atkin NB (1981) Break points in chromosome1: abnormalities of 218 human neoplasms. Cancer Genet Cytogenet 4:215–225Google Scholar
  10. Bruns GAP, Sherman SL (1989) Report of the committee on the genetic constitution of chromosome 1. Cytogenet Cell Genet 51:67–90Google Scholar
  11. Conley ME, Delacroix DL (1987) Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med 106:892–899Google Scholar
  12. Davidson MK, Le Beau MM, Eddy RL, Shows TB, DiPietro LA, Kingzette M, Hanly WC (1988) Genetic mapping of the human polymeric immunoglobulin receptor gene to chromosome region 1q31→q41. Cytogenet Cell Genet 48:107–111Google Scholar
  13. Eiffert H, Quentin E, Decker J, Hillemeir S, Hufschmidt M, Klingmüller D, Weber MJ, Hilschmann N (1984) Die Primärstruktur der menschlichen freien Sekretkomponente und die Anordnung der Disulfidbrücken. Hoppe-Seyler's Z Physiol Chem 365:1489–1495Google Scholar
  14. Feinberg AP, Vogelstein B (1984) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity Addendum. Anal Biochem 137:266–267PubMedGoogle Scholar
  15. Geurts van Kessel AHM, Westerveld A, Groot PG de, Meera Khan P, Hagemeijer A (1980) Regional location of the genes coding for human ACO2, ARSA and NAGA on chromosome 22. Cytogenet Cell Genet 28:169–172Google Scholar
  16. Hanson LÅ, Brandtzaeg P (1989) The mucosal defence system. In: Stiehm ER (ed) Immunologic disorders in infants and children, 3rd edn. Saunders, Philadelphia, pp 116–155Google Scholar
  17. Krajči P, Solberg R, Sandberg M, Øyen O, Jahnsen T, Brandtzaeg P (1989) Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues. Biochem Biophys Res Commun 158:783–789Google Scholar
  18. Krajči P, Meling GI, Taskén K, Rognum TO, Brandtzaeg P (1991) Studies on tissue-specific expression of mRNA for the human transmembrane secretory component and its regulation by cytokines. In: Tsuchiya M, Nagura H, Hibi T, Moro I (eds) Frontiers of mucosal immunology, vol 1. Elsevier, Amsterdam pp 307–310Google Scholar
  19. Lublin DM, Lemons RS, Le Beau MM, Holers VM, Tykocinski ML, Meoob ME, Atkinson JPG (1987) The gene encoding decay-accellerating factor (DAF) is located in the complementregulatory locus on the long arm of chromosome 1. J Exp Med 165:1731–1736Google Scholar
  20. Maniatis T, Fritsch E, Sambrook (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  21. Mestecky J, McGhee JR (1987) Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 40:153–245Google Scholar
  22. Mostov KE, Blobel G (1982) A transmembrane precursor of secretory component. The receptor for transcellular transport of polymeric immunoglobulins. J Biol Chem 257:11816–11821Google Scholar
  23. Mostov KE, Friedlander M, Blobel G (1984) The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 308:37–43Google Scholar
  24. Ralph SJ, Thomas ML, Morton CC, Trowbridge IS (1987) Structure variants of human T-200 glycoprotein (leukocyte-common antigen). EMBO J 6:1251–1257Google Scholar
  25. Rodrigues de Cordoba S, Lublin DM, Rubinstein P, Atkinson JP (1985) Human genes for 3 complement components that regulate the activation of C3 are tightly linked. J Exp Med 161:1189–1195Google Scholar
  26. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5294–5299Google Scholar
  27. Southern EM (1975) Detection of specific sequence among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedGoogle Scholar
  28. Tabor S, Richardson CC (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 84:4767–4771Google Scholar
  29. Wang H, Wu J, Tang P (1989) Superfamily expands. Nature 337:514Google Scholar
  30. Weis JH, Morton CC, Bruns GAP, Weis JJ, Klickstein LB, Wong WW, Fearon DT (1987) A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32. J Immunol 138:312–315Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. Krajči
    • 1
  • K. H. Grzeschik
    • 2
  • A. H. M. Geurts van Kessel
    • 3
  • B. Olaisen
    • 4
  • P. Brandtzaeg
    • 1
  1. 1.Laboratory for Immunohistochemistry and Immunopathology (LIIPAT)Institute of Pathology, University of Oslo The National HospitalOsloNorway
  2. 2.Institut für Humangenetik der UniversitätMarburgGermany
  3. 3.Department of Human GeneticsUniversity Hospital NijmegenHB NijmegenThe Netherlands
  4. 4.Institute for Forensic Medicine, University of Oslo, The National HospitalOsloNorway

Personalised recommendations