, Volume 187, Issue 1, pp 14–25 | Cite as

Compartmental distribution and redistribution of abscisic acid in intact leaves

I. Mathematical formulation
  • Stefan Slovik
  • Mathias Baier
  • Wolfram Hartung


Using experimental information obtained in earlier studies on the permeabilities of mesophyll and guard-cell membranes to abscisic acid (ABA), and on stress-induced pH shifts in the apoplasm and in symplasmic compartments (Hartung et al., 1988, Plant Physiol. 86, 908–913; Hartung et al. 1990, BPGRG Monogr. 215–235), a mathematical model is presented which will permit computer analysis of the stress-induced redistribution of ABA amongst different leaf cell types (mesophyll, epidermis, guard cells, phloem cells) and their compartments (cell wall, cytosol, chloroplast stroma, vacuole). Metabolism and conjugation of ABA and its transport in the xylem and the phloem are also taken into consideration. We ask whether the stressinduced redistribution of ABA is fast and intensive enough to induce stomatal closure within a few minutes. The model can be adapted to any other weak acid or base, e.g. to other phytohormones (auxins, gibberellins), which differ from ABA, e.g. by their membrane conductances, anion permeabilities and pKa values. Our wholeleaf model can predict the time course and the compartmentation of, for example, phytohormone concentrations as a function of changing source-sink patterns (e.g. by compartmental pH shifts in the leaf lamina). An analysis of the present knowledge of the ABA physiology of leaves and studies on stress effects are presented in subsequent publications. In this communication we describe the whole-leaf model and present and discuss all necessary morphological (volumes, surfaces etc.) and physiological (pH, membrane conductances etc.) parameters of an unstressed leaf of Valerianella locusta L. We draw fundamental conclusions by comparing determined and calculated ABA concentrations in the leaf-cell compartments. We found that the model predictions are close to measured data, and we conclude that in unstressed leaves ABA is close to flux equilibrium amongst the different tissues and compartments.

Key words

Abscisic acid (compartmentation in leaves) Computer model (ABA compartmentation) Drought stress (quantification) Leaf (ABA compartmentation) pH shift Stomatal regulation Valerianella 



abscisic acid


ABA conjugates


neutral ABA species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baier, M., Hartung, W. (1988) Movement of abscisic acid across the plasmalemma and the tonoplast of guard cells of Valerianella locusta. Bot. Acta 101, 332–337Google Scholar
  2. Baier, M., Hartung, W. (1991) Movement of abscisic acid across the plasmamembrane of phloem elements of Plantago major. J. Plant Physiol. 137, 297–300Google Scholar
  3. Behl, R., Hartung, W. (1986) Movement and compartmentation of abscisic acid in guard cells of Valerianella locusta; effects of osmotic stress, external H+ concentration and fusicoccin. Planta 168, 360–368Google Scholar
  4. Blackman, P.G., Davies, W.J. (1985) Root to shoot communication in maize plants and the effect of soil drying. J. Exp. Bot. 36, 39–48Google Scholar
  5. Bray, E.A., Zeevaart, J.A.D. (1985) The compartmentation of ab scisic acid and β-d-glucopyranosyl-abscisate in mesophyll cells. Plant Physiol. 79, 719–722Google Scholar
  6. Cowan, A.K., Railton, J.D. (1986) Chloroplasts and the biosyn thesis and catabolism of abscisic acid. Plant Growth Regul. 4, 211–224Google Scholar
  7. Cowan, I.R., Raven, J.A., Hartung, W., Farquhar, G.D. (1982) A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves. Aust. J. Plant Physiol. 9, 489–498Google Scholar
  8. Daeter, W., Hartung, W. (1990) Compartmentation and transport of abscisic acid in mesophyll cells of intact leaves of Valerianella locusta. J. Plant Physiol. 136, 306–312Google Scholar
  9. Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A. (1989) Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol. 90, 1233–1238Google Scholar
  10. Dörffling, K. (1983) Regulation der Stomaapertur Ein Beispiel für die Bedeutung der Hormonsynthese, Metabolisierung, Kompar timentierung und Interaktion für einen hormonal gesteuerten Prozess. Hohenheimer Arb. 129, 102–120Google Scholar
  11. Edwards, M.C., Bowling, D.J.F. (1986) The growth of rust germ tubes towards stomata in relation to pH gradients. Physiol. Mol. Plant Pathol. 29, 185–196Google Scholar
  12. Gimmler, H., Hartung, W. (1988) Low permeability of the plas mamembrane of Dunaliella parva for solutes. J. Plant Physiol. 133, 165–172Google Scholar
  13. Gimmler, H., Heilmann, B., Demmig, B., Hartung, W. (1981) The permeability coefficients of the plasmalemma and the chloro plast envelope of spinach mesophyll cells for phytohormones. Z. Naturforsch. 36C, 672–678Google Scholar
  14. Hartung, W. (1983) The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant Cell Environ. 6, 427–429Google Scholar
  15. Hartung, W., Radin, J.W. (1989) Abscisic acid in the mesophyll apoplast and in the root xylem sap of water stressed plants. The significance of pH gradients. Curr. Top. Plant Biochem. Physiol. 8, 110–124Google Scholar
  16. Hartung, W., Slovik, S. (1991) Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution (Tansley Review No. 35). New Phytol. 119, 361–382Google Scholar
  17. Hartung, W., Gimmler, H., Heilmann, B., Kaiser, G. (1980) The site of abscisic acid metabolism in mesophyll cells of Spinacea oleracea. Plant Sci. Lett. 18, 359–364Google Scholar
  18. Hartung, W., Heilmann, B., Gimmler, H. (1981) Do chloroplasts play a role in absisic acid synthesis? Plant Sci. Lett. 22, 235–242Google Scholar
  19. Hartung, W., Radin, J.W., Hendrix, D. (1988) Abscisic acid movement into the apoplastic solution of water stressed cotton leaves: role of apoplastic pH. Plant Physiol. 86, 908–913Google Scholar
  20. Hartung, W., Slovik, S., Baier, M. (1990) pH changes and redistribution of ABA within the leaf under stress. In: Importance of root to shoot communication in the responses to environmental stress, pp. 215–235, Davies, W.J., Jeffcoat, B., eds. Monogr. 21, British Plant Growth Regulator Group, Wantage, UKGoogle Scholar
  21. Heldt, H.W., Werdan, K., Milovancev, M., Geller, G. (1973) Alkalization of the chloroplast stroma caused by light dependent proton flux into the thylakoid space. Biochim. Biophys. Acta 314, 224–241Google Scholar
  22. Kaiser, G., Weiler, E.W., Hartung, W. (1985) The intracellular distribution of abscisic acid in mesophyll cells — the role of the vacuole. J. Plant Physiol. 119, 237–245Google Scholar
  23. Lahr, W., Raschke, K. (1988) Abscisic acid contents and concentrations in protoplasts from guard cells and mesophyll cells of Vicia faba L. Planta 173, 528–531Google Scholar
  24. Larcher, W., ed. (1975) Physiological plant ecology, Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Lehmann, H., Glund, K. (1986) Abscisic acid metabolism — vacuolar/extravacuolar distribution of metabolites. Planta 168, 559–562Google Scholar
  26. Loveys, B.R., Robinson, S.P. (1987) Abscisic acid synthesis and metabolism in barley leaves and protoplasts. Plant Sci. Lett. 49, 23–30Google Scholar
  27. Nobel, P.S., ed. (1983) Biophysical plant physiology and ecology. W.H. Freeman & Co., New YorkGoogle Scholar
  28. Pfanz, H., Dietz, K.J. (1987): A fluorescence method for the determination of the apoplastic proton concentration in intact leaf tissues. J. Plant Physiol. 129, 41–48Google Scholar
  29. Pierce, M., Raschke, K. (1980) Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta 148, 174–182Google Scholar
  30. Slovik, S., Hartung, W. (1992a) Compartmental distribution and redistribution of abscisic acid in intact leaves. II. Model analysis. Planta 187, 26–36Google Scholar
  31. Slovik, S., Hartung, W. (1992b) Compartmental distribution and redistribution of abscisic acid in intact leaves. III. Analysis of the stress-signal chain. Planta 187, 37–47Google Scholar
  32. Touchard, P., Demarty, M., Ripoll, C., Morvan, C., Thellier, M. (1989) Estimation of ionic mobilities in flax cell walls. In: Plant membrane transport: The current position, pp. 603–606, Dainty, J., De Michelis, M.I., Marré, E., Rasi Caldogno, F., eds. Elsevier, Amsterdam New York OxfordGoogle Scholar
  33. Url, W. (1952) Unterschiede der Plasmapermeabilität in den Gewebeschichten krautiger Stengel. Physiol. Plant. 5, 135–144Google Scholar
  34. Weast, R.C., ed. (1975) Handbook of chemistry and physics, 56th edn, CRC press, Cleveland Ohio USAGoogle Scholar
  35. Weyers, J.D.B., Hillman, J.R. (1979) Uptake and distribution of abscisic acid in Commelina leaf epidermis. Planta 144, 167–172Google Scholar
  36. Zeevaart, J.A.D., Creelman, R.A. (1988) Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. 39, 439–473Google Scholar
  37. Ziegler, H. (1982) Flüssigkeitsstrame in Pflanzen. In: Biophysik, pp. 652–664, Hoppe, W., Lohmann, W., Markl, H., Ziegler, H., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Stefan Slovik
    • 1
  • Mathias Baier
    • 1
  • Wolfram Hartung
    • 1
  1. 1.Julius von Sachs-Institut für Biowissenschaften, Lehrstuhl Botanik IUniversität WürzburgWürzburgGermany

Personalised recommendations