Advertisement

Planta

, Volume 196, Issue 2, pp 311–320 | Cite as

The unique root-nodule symbiosis between Rhizobium and the aquatic legume, Neptunia natans (L. f.) Druce

  • N. S. Subba-Rao
  • Pedro F. Mateos
  • David Baker
  • H. Stuart Pankratz
  • Joann Palma
  • Frank B. DazzoEmail author
  • Janet I. Sprent
Article

Abstract

We examined the development of the aquatic N2-fixing symbiosis between Rhizobium sp. (itNeptunia) and roots of Neptunia natans L. f. (Druce) (previously N. oleracea Lour.) under natural and laboratory conditions. When grown in its native marsh habitat, this unusual aquatic legume does not develop root hairs, the primary sites of rhizobial infection for most temperate legumes. Under natural conditions, the aquatic plant floats and develops nitrogen-fixing nodules at emergence of lateral roots on the primary root and on adventitious roots at stem nodes, but not from the stem itself. Cytological studies using various microscopies revealed that the mode of root infection involved an intercellular route of entry followed by an intracellular route of dissemination within nodule cells. After colonizing the root surface, the bacteria entered the primary root cortex through natural wounds caused by splitting of the epidermis and emergence of young lateral roots, and then stimulated early development of nodules at the base of such roots. The bacteria entered the nodule through pockets between separated host cells, then spread deeper in the nodule through a narrower intercellular route, and eventually evoked the formation of infection threads that penetrated host cells and spread throughout the nodule tissue. Bacteria were released from infection droplets at unwalled ends of infection threads, became enveloped by peribacteroid membranes, and transformed into enlarged bacteroids within symbiosomes. In older nodules, the bacteria within symbiosomes were embedded in an unusual, extensive fibrillar matrix. Cross-inoculation tests of 18 isolates of rhizobia from nodules of N. natans revealed a host specificity enabling effective nodulation of this aquatic legume, with lesser affinity for Medicago sativa and Ornithopus sp., and an inability to nodulate several other crop legume species. Acetylene reduction (N2 fixation) activity was detected in nodules of N. natans growing in aquatic habitats under natural conditions in Southern India. These studies indicate that a specific group of Rhizobium sp. (Neptunia) occupies a unique ecological niche in aquatic environments by entering into a N2-fixing root-nodule symbiosis with Neptunia natans.

Key words

Infection Neptunia (root nodules) Nitrogen fixation Nodulation Rhizobium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alazard, D., Ndoye, I., Dreyfus, B. (1988) Sesbania rostrata and other stem-nodulated legumes. In: Nitrogen fixation: hundred years after, pp. 765–769. Bothe, H., DeBruijn, F., Newton, W., eds. Gustav Fischer, StuttgartGoogle Scholar
  2. Allen, O.N., Allen, E.K. (1981) The Leguminosae. A source book of characteristics, uses, and nodulation. University of Wisconsin Press, MadisonGoogle Scholar
  3. Barrios, E., Herrara, R. (1994) Nitrogen cycling in a seasonally flooded forest: soil nitrogen mineralization and nitrification. J. Trop. Bot. 10, 399–416CrossRefGoogle Scholar
  4. Batut, J., Bostard, P., Debelle, F., Denarie, J., Ghai, J., Houget, T., Infante, D., Martinez, E., Rosseberg, C., Vasse, J., Truchet, G. (1985) Developmental biology of the Rhizobium meliloti-alfalfa symbiosis: a joint genetic and cytological approach. In: Nitrogen fixation research progress, pp. 109–115, Evans, H., Bottomley, P., Newton, W., eds. Martinus Nijhoff, BostonGoogle Scholar
  5. Brown, S.M., Walsh, K.B. (1994) Anatomy of the legume cortex with respect to nodule permeability. Austr. J. Plant Physiol. 21, 49–68Google Scholar
  6. Callaham, D., Torrey, J. (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can. J. Bot. 59, 1647–1664Google Scholar
  7. Chandler, M.R. (1978) Some observations on infection of Arachis hypogaea L. by Rhizobium. J. Exp. Bot. 29, 749–755Google Scholar
  8. Dazzo, F. (1982) Leguminous root nodules. In: Experimental microbial ecology, pp. 431–446, Burns, R., Slater, J., eds. Blackwell, Oxford, UKGoogle Scholar
  9. Dazzo, F., Brill, W. (1979) Bacterial polysaccharide which binds Rhizobium trifolii to clover root hairs. J. Bacteriol. 137, 1362–1373Google Scholar
  10. DeBruijn, F. (1989) The unusual symbiosis between the diazotrophic stem-nodulating bacterium Azorhizobium caulinodans ORS571 and its host, the tropical legume Sesbania rostrata. In: Plant-microbe interactions: molecular and genetic perspectives, pp. 457–504. Kosuge, T., Nester, E.., eds. McGraw-Hill, New YorkGoogle Scholar
  11. De Faria, S., Hay, G., Sprent, J. (1988) Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. J. Gen. Microbiol. 134, 2291–2296Google Scholar
  12. Dreyfus, B., Alazard, D., Dommergues, Y. (1986) Stem-nodulating rhizobia. In: Current perspectives in microbial ecology, pp. 161–169, Reddy, C., Klug, M., eds. American Society for Microbiology, Washington, D.C.Google Scholar
  13. Fahraeus, G. (1957) The infection of clover roots by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16, 374–381Google Scholar
  14. Goh, C.J., Lim, C.H., Lim, G., Louis, I. (1989) Nitrogen fixation by nodules of some tropical legume and non-legume plants. In: Proceedings of the Japanese Society for the Promotion of Science —National University of Singapore inter-faculty seminar, pp. 145–159, Lim, G., Katsuya, K., eds. National University of Singapore, SingaporeGoogle Scholar
  15. Hardy, R.W., Holsten, R., Jackson, E., Burns, R. (1968) The acetylene-ethylene assay for nitrogen fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1207Google Scholar
  16. Higashi, S. (1966) Electron microscopic studies on the infection thread developing in the root hair of Trifolium repens L. infected with Rhizobium trifolii. J. Gen. Appl. Microbiol. 12, 147–156Google Scholar
  17. James, E.K., Sprent, J., Sutherland, J., McInroy, S., Minchin, F. (1992a) The structure of nitrogen fixing root nodules on the aquatic mimosoid legume Neptunia plena. Ann. Bot. 69, 173–180Google Scholar
  18. James, E.K., Minchin, F. Sprent, J. (1992b) The physiology and nitrogen-fixing capability of aquatically and terrestrially-grown Neptunia plena: the importance of nodule oxygen supply. Ann. Bot. 69, 181–187Google Scholar
  19. James, E., Shaw, J., Catellan, A., De Faria, S., Sprent, J.I. (1993) The infection of aquatic and terrestrial Neptunia species by Rhizobium. In: New horizons in nitrogen fixation, p. 351, Palacios, R., Mora, J., Newton, W., eds. Kluwer, DordrechtGoogle Scholar
  20. Loureiro, M.D., De Faria, S., James, E.K., Pott, A., Franco, A.A. (1994) Nitrogen-fixing stem nodules of the legume, Discolobium pulchellum Benth. New Phytol. 128, 283–295Google Scholar
  21. McVaugh, R. (1987) Flora Novo-Galiciana. In: Leguminosae, vol. 5, pp. 225–227, University of Michigan Press, Ann ArborGoogle Scholar
  22. Minchin, F., Witty, J., Sheehy, J., Muller, M. (1983) A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J. Exp. Bot. 13, 501–512Google Scholar
  23. Naisbitt, T., Sprent, J.I. (1993) The long term effects of nitrate on the growth and nodule structure of the caesalpinioid herbaceous legume Chamaecrista fasciculata Michaux. J. Exp. Bot. 44, 829–836Google Scholar
  24. Napoli, C., Dazzo, F., Hubbell, D. (1975a) Ultrastructure of infection and common antigen relationships in Aeschynomene. In: Proceedings of the 5th Australian legume nodulation conference, pp. 35–37, Vincent, J., ed., Brisbane, AustraliaGoogle Scholar
  25. Napoli, C., Dazzo, F., Hubbell, D. (1975b) Production of cellulose microfibrils by Rhizobium. Appl. Microbiol. 30, 123–131Google Scholar
  26. Napoli, C., Hubbell, D. (1975) Ultrastructure of Rhizobium-induced infection threads in clover root hairs. Appl. Microbiol. 30, 1003–1009Google Scholar
  27. Ndoye, L., DeBilly F., Vasse J., Dreyfus B., Truchet G. (1994) Root nodulation of Sesbania rostrata. J. Bacteriol. 176, 1060–1068Google Scholar
  28. Newcomb, W. (1981) Nodule morphogenesis and differentiation. In: Biology of Rhizobiaceae, pp. 247–298, Giles, K., Atherly, A., eds. Academic Press, New YorkGoogle Scholar
  29. Orgambide, G., Li, J., Hollingsworth, R., Philip-Hollingsworth, S., Dazzo, F. (1994) Membrane accumulation, structures, and biological activities of chitolipooligosaccharides from wild type Rhizobium leguminosarum bv. trifolii ANU843. In: Proceedings of the 7th international symposium on molecular plant-microbe interactions, p. 27. University of Edinburgh, ScotlandGoogle Scholar
  30. Parsons, R., Sprent, J.I., Raven, J.A. (1993) Humidity and light affect the growth, development, and nitrogenase activity of stem nodules of Sesbania rostrata (Brem). New Phytol. 125, 749–755Google Scholar
  31. Schaede, R. (1940) Die Knollchen der adventiven Wasserwurzein, von Neptunia Oleracea und ihre Bakterien-Symbiose. Planta 31, 1–21Google Scholar
  32. Shaw, J. (1993) Factors affecting nod gene induction, particularly in rhizobia from tropical trees. Ph.D. thesis, University of Dundee, UKGoogle Scholar
  33. Sprent, J., Raven, J. (1992) Evolution of nitrogen-fixing symbioses. In: Biological nitrogen fixation, pp. 461–496, Stacey, G., Burris, R., Evans H., eds. Chapman and Hall, New YorkGoogle Scholar
  34. Streeter, J., Salminen, S.O. (1993) Effect of polysaccharide deposition by Bradyrhizobium japonicum bacteroids in soybean nodules on nodule function. Plant Physiol. Biochem. 31, 73–79Google Scholar
  35. Tsien, H., Dreyfus, B., Schmidt, E. (1983) Initial stages in the morphogenesis of nitrogen fixing stem nodules of Sesbania rostrata. J. Bacteriol. 156, 888–897Google Scholar
  36. Truchet, G., Camut, S., DeBilly, F., Odorico, R., Vasse, J. (1989) The Rhizobium-legume symbiosis: two methods to discriminate between nodules and other root-derived structures. Protoplasma 149, 82–88Google Scholar
  37. Turgeon, B., Bauer, W.D. (1985) Ultrastructure of infection-thread development during the infection of soybean by Rhizobium japonicum. Planta 163, 328–349Google Scholar
  38. Vincent, J. (1970) A manual for the practical study of the root nodule bacteria. IBP Handbook No. 15, Blackwell Scientific Publications, Oxford, UKGoogle Scholar
  39. Windler, D.R. (1966) A revision of the genus Neptunia (Leguminosae). Aust. J. Bot. 14, 339–340Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • N. S. Subba-Rao
    • 1
  • Pedro F. Mateos
    • 1
  • David Baker
    • 1
  • H. Stuart Pankratz
    • 1
  • Joann Palma
    • 1
  • Frank B. Dazzo
    • 1
    Email author
  • Janet I. Sprent
    • 2
  1. 1.Department of Microbiology and Center for Microbial EcologyMichigan State UniversityEast LansingUSA
  2. 2.Department of Biological ScienceUniversity of DundeeDundeeUK

Personalised recommendations