Advertisement

Journal of Paleolimnology

, Volume 5, Issue 3, pp 227–253 | Cite as

Holocene evolution of the crater lake at Malha, Northwest Sudan

  • Florias Mees
  • Dirk Verschuren
  • Roger Nijs
  • Henri Dumont
Article

Abstract

A reconstruction of the hydrological and environmental evolution of the crater lake at Malha (Northern Darfur, Sudan) resulted from the mineralogical and biological study of a 9.21 m section of lake sediments, representing an uninterrupted sequence of lacustrine deposition since 8 290 14C years BP.

Important changes in water supply and conditions of sedimentation are reflected in the nature of the sediments and the morphology and stratigraphical distribution of various salt minerals. Additional information on lake circulation patterns and salinity conditions are obtained from associated benthic paleocommunities, represented by ostracods and dipterid larvae. Combining both lines of evidence, the studied sequence can be divided in six distinct sections, which correspond to six successive periods in the lake's Holocene history. The first three periods, generally characterized by high lake levels, represent three generations of a meromictic lake, two of which have ended with a complete desiccation of the lake basin. Meromixis was stable during Period I, due to wind shelter and pronounced density stratification. In the course of Periods II and III stratification was repeatedly interrupted. During Period II, the disruptions were accompanied by important water budget fluctuations; a superimposed gradual decrease in net water supply eventually resulted in holomictic conditions terminating this period. Evidence of turbulence periodically affecting profundal waters is recorded in the sediments of Period III, suggesting that disruptions of stratification were now initiated by very strong winds. Between Period I and Period III, the littoral mixolimnion gradually evolved from near fresh to mesosaline. In Periods IV to VI, lake level was intermediate to low. The lake was holomictic for most of the time and meso- to hypersaline; during Period V, it repeatedly shrunk to a shallow brine pool.

The Holocene evolution of Malha Crater Lake illustrates the progressive increase in aridity over most of North Africa following a well-established, early- to mid-Holocene major humid episode. The uninterrupted sedimentary sequence lends itself for detailed reconstruction of Holocene climatic evolution in arid Northeast Africa, a region where records of continuous lacustrine deposition are extremely scarce. As the chronology of critical events in the lake's history remains as yet unsupported by radiocarbon dates, correlation with other Holocene sequences in the eastern Sahara is highly tentative at this point.

Key words

Eastern Sahara lake history climatic change saline lake meromixis gaylussite nahcolite eitelite magadiite Chironomidae Ostracoda 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdl Salaam Y., 1966. The ground-water geology of the Gezira. M.Sc. Thesis, University of Khartoum.Google Scholar
  2. Anderson, R. Y. & W. E. Dean, 1988. Lacustrine varve formation through time. Palaeogeogr., Palaeoclimatol., Palaeoecol. 62: 215–235.Google Scholar
  3. Anderson R. Y., W. E. Dean, J. P. Bradbury & D. Love, 1985. Meromictic lakes and varved lake sediments in North America. U.S. Geol. Survey Bull. 1607, 19 pp.Google Scholar
  4. Anthony, R. S., 1977. Iron-rich rhythmically laminated sediments in Lake of the Clouds, northeastern Minnesota. Limnol. Oceanogr. 22: 45–54.Google Scholar
  5. Bricker, O. P., 1969. Stability constants and gibbs free energies of formation of magadiite and kenyaite. Am. Mineral. 54: 1026–1033.Google Scholar
  6. Brunskill, G. J., 1969. Fayetteville Green Lake, New York. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol. Oceanogr. 14: 830–847.Google Scholar
  7. Clark, F., A. Beeby & P. Kirby, 1989. A study of the macro-invertebrates of Lakes Naivasha, Oloidien and Sonachi, Kenya. Rev. Hydrobiol. trop. 22: 21–33.Google Scholar
  8. Cohen, A. S., R. Dussinger & J. Richardson, 1983. Lacustrine paleochemical interpretations based on eastern and southern African ostracods. Palaeogeogr., Palaeoclimatol., Palaeoecol. 43: 129–151.Google Scholar
  9. COHMAP Members, 1988. Climatic changes of the last 18 000 years: observations and model simulations. Science 241: 1043–1052.Google Scholar
  10. Colchester, G. V., 1927. Malha Crater, Darfur. Sudan Notes & Records 10: 233–235.Google Scholar
  11. Contreras-Lichtenberg, R., 1986. Revision der in der Westpaläarktis verbreiteten Arten des Genus Dicrotendipes Kieffer, 1913 (Diptera, Nematocera, Chironomidae). Ann. Naturhist. Mus. Wien (B) 88/89: 663–726.Google Scholar
  12. Cranston P. S. & D. D. Judd, 1989. Diptera: Fam. Chironomidae of the Arabian Peninsula. In F. Krupp (ed.), Fauna of Saudi Arabia 10: 236–289.Google Scholar
  13. Cranston, P. S., C. J. Webb & J. Martin, 1990. The saline nuisance chironomid Carteronica longilobus (Diptera: Chironomidae): a systematic reappraisal. Syst. Entomol. 15: 401–432.Google Scholar
  14. Dean, W. E., J. P. Bradbury, R. Y. Anderson & C. W. Barnosky, 1984. The variability of Holocene climate change: evidence from varved lake sediments. Science 226: 1191–1194.Google Scholar
  15. Deelman, J. C., 1984. Low-temperature synthesis of eitelite, Na2CO3·MgCO3. N. Jb. Miner. Mh. 10: 468–480.Google Scholar
  16. Dejoux, C., 1973. Données faunistiques nouvelles concernant les Chironomides (Diptères Nematocères) de la région éthiopienne. Cah. O.R.S.T.O.M., sér. Hydrobiol. 7: 77–93.Google Scholar
  17. Dejoux, C., 1981. Chironomides. In J. R. Durand & C. Lévèque (eds), Flore et Faune aquatique de l'Afrique Sahelo-Soudaniènne Vol. 2, O.R.S.T.O.M., Paris: 583–624.Google Scholar
  18. Dickman, M. D., 1979. A possible varving mechanism for meromictic lakes. Quat. Res. 11: 113–124.Google Scholar
  19. Dickman, M. & I. Artuz, 1978. Mass mortality of photosynthetic bacteria as a mechanism for dark lamina formation in sediments of the Black Sea. Nature 275: 191–195.Google Scholar
  20. Diebel, K., 1962. Fossiles Vorkommen von Limnocythere stationis Vavra (Ostracoda). Geologie 11: 732–734.Google Scholar
  21. Epler J. H., 1988. Biosystematics of the genus Dicrotendipes Kieffer, 1913 (Diptera: Chironomidae: Chironominae) of the world. Mem. Am. Ent. Soc. 36, 214 pp.Google Scholar
  22. Eugster, H. P., 1966. Sodium carbonate-bicarbonate minerals as indicators of pCO2. J. Geophys. Res. 1: 3369–3377.Google Scholar
  23. Eugster, H. P., 1967. Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157: 1177–1180.Google Scholar
  24. Eugster, H. P., 1969. Inorganic bedded cherts from the Magadi area, Kenya. Contrib. Mineral. Petrol. 22: 1–31.Google Scholar
  25. Eugster, H. P., 1980. Lake Magadi, Kenya, and its precursors. In A. Nissenbaum (ed.), Hypersaline brines and evaporitic environments. Elsevier, Amsterdam: 195–230.Google Scholar
  26. Fahey J. J., 1962. Saline minerals of the Green River formation. U. S. Geol. Survey Prof. Paper 405, 50 pp.Google Scholar
  27. Gabriel B. & S. Kröpelin, 1984. Holocene lake deposits in Northwest-Sudan. In J. A. Coetzee & E. M. Van Zinderen Bakker Sr. (eds), Palaeoecology of Africa 16: 295–299.Google Scholar
  28. Gaines, A. M., 1977. Protodolomite redefined. J. Sed. Petrol. 47: 543–546.Google Scholar
  29. Gasse, F., J. C. Fontes, J. C. Plaziat, P. Carbonel, I. Kaczmarska, P.De Deckker, I. Soulié-Marsche, Y. Callot & P. A. Dupeuble, 1987. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara. Palaeogeogr., Palaeoclimatol., Palaeoecol. 60: 1–46.Google Scholar
  30. Graf, D. L. & J. R. Goldsmith, 1956. Some hydrothermal synthesis of dolomite and protodolomite. J. Geology 64: 173–186.Google Scholar
  31. Hardie, L. A., 1987. Dolomization: a critical view of some current views. J. Sed. Petrol. 57: 166–183.Google Scholar
  32. Harrison, A. D., 1987. Chironomidae of five central Ethiopian Rift Valley lakes. Ent. scand. Suppl. 29: 39–43.Google Scholar
  33. Haynes, C. V. Jr., 1987. Holocene migration rates of the Sudano-Sahelian wetting front, Arba'in desert, eastern Sahara. In A. E. Close (ed.), Prehistory of Arid North Africa: Essays in honour of Fred Wendorf, Southern Methodist University, Dallas: 69–84.Google Scholar
  34. Haynes, C. V. Jr., C. H. Eyles, L. A. Pavlish, J. C. Ritchie & M. Rybak, 1989. Holocene palaeoecology of the eastern Sahara; Selima Oasis. Quat. Sci. Rev. 8: 109–136.Google Scholar
  35. Haynes, C. V. Jr., P. J. Mehringer Jr. & S. A. Zaghloul, 1979. Pluvial lakes of Northwestern Sudan. Geogr. J. 145: 437–445.Google Scholar
  36. Hofmann, W., 1986. Chironomid analysis. In B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology, Wiley & Sons, New York: 715–727.Google Scholar
  37. Ibrahim F. N., 1984. Ecological imbalance in the Republic of the Sudan — with reference to desertification in Darfur. Bayreuther geowiss. Arb. 6, 215 pp.Google Scholar
  38. Jones B. F., 1965. Hydrology and mineralogy of Deep Springs Lake, Inyo County, California. U.S. Geol. Survey Prof. Paper 502-A, 56 pp.Google Scholar
  39. Jones, B. F., H. P. Eugster & S. L. Rettig, 1977. Hydrochemistry of the Lake Magadi basin, Kenya. Geochim. Cosmochim. Acta 41: 53–72.Google Scholar
  40. Jones, B. F., S. L. Rettig & H. P. Eugster, 1967. Silica in alcaline brines. Science 158: 1310–1314.Google Scholar
  41. Kalff, J. & S. Watson, 1986. Phytoplankton and its dynamics in two tropical lakes: a tropical and temperate zone comparison. Hydrobiologia 138: 161–176.Google Scholar
  42. Kempf, E. K., 1986. Late Quaternary environmental changes in the Eastern Sahara (Libyan Desert) documented by an ostracode diagram. INQUA-ASEQUA Int. Symp. Changements globaux en Afrique durant le Quaternaire, Dakar 1986, Trav. Doc. O.R.S.T.O.M. 197: 235–238.Google Scholar
  43. Klie W., 1938. Krebstiere oder Crustacea III: Ostracoda, Muschelkrebse. Tierwelt Deutschlands und der angrenzenden Meeresteile 34, 230 pp.Google Scholar
  44. Köppen, W., 1931. Grundriss der Klimakunde. Walter de Gruyter, Berlin, 388 pp.Google Scholar
  45. Kutzbach, J. E. & F. A. Street-Perrott, 1985. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317: 130–131.Google Scholar
  46. Last, W. M. & T. H. Schweyen, 1985. Late Holocene history of Waldsea Lake, Saskatchewan, Canada. Quat. Res. 24: 219–234.Google Scholar
  47. Ludlam, S. D., 1976. Laminated sediments in holomictic Berkshire lakes. Limnol. Oceanogr. 21: 743–746.Google Scholar
  48. MacIntyre, S. & J. M. Melack, 1982. Meromixis in an equatorial African soda lake. Limnol. Oceanogr. 27: 595–609.Google Scholar
  49. Maglione, G., 1974. Un modèle de sédimentation évaporitique continentale actuelle: le Lac Chad et ses dépendences hydrologiques littorales. Rev. Géogr. phys. Géol. dynam. 16: 171–176.Google Scholar
  50. Maglione G., 1976. Géochimie des évaporites et silicates néoformés en milieu continentale confiné; les dépressions interdunaires du Tchad. Trav. Doc. O.R.S.T.O.M. 50, 335 pp.Google Scholar
  51. Martens, K, 1984. On the freshwater ostracods (Crustacea, Ostracoda) of the Sudan, with special reference to the Red Sea Hills, including the description of a new species. Hydrobiologia 110: 137–161.Google Scholar
  52. McLachlan, A. J. & S. M. MacLachlan, 1969. The bottom fauna and sediments in a drying phase of a saline African lake (L. Chilwa, Malawi). Hydrobiologia 34: 401–413.Google Scholar
  53. McLachlan, A. J., P. R. Morgan, C. Howard-Williams, S. M. McLachlan & D. Bourn, 1972. Aspects of the recovery of a saline African lake following a dry period. Arch. Hydrobiol. 70: 325–340.Google Scholar
  54. Mees, F. & G. Stoops, 1990. Micromorphological study of a sediment core from the Malha Crater Lake, Sudan. In L. A. Douglas (ed.), Soil micromorphology: a basic and applied science. Elsevier, Amsterdam: 295–301.Google Scholar
  55. Melack, J. M., 1978. Morphometric, physical and chemical features of the volcanic crater lakes of western Uganda. Arch. Hydrobiol. 84: 430–453.Google Scholar
  56. Melack, J. M., 1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85.Google Scholar
  57. Mensching, H. & F. Ibrahim, 1977. The problem of desertification in and around arid lands, with two contributions on the anthropogenic destruction of land use potential and a discussion of measures for rehabilitation. Applied Sciences and Development 10: 7–43.Google Scholar
  58. Milton, C., J. M. Axelrod & F. S. Grimaldi, 1955. New minerals, reedmergnerite (Na2O.B2O3.6SiO2) and eitelite (Na2O.MgO.2CO3) associated with leucosphenite, shortite, searlesite and crocidolite in the Green River formation, Utah. Am. Mineral. 40: 326–327.Google Scholar
  59. Monnin, C. & J. Schott, 1984. Determination of the solubility products of sodium carbonate minerals and an application to trona deposition in Lake Magadi (Kenya). Geochim. Cosmochim. Acta 48: 571–581.Google Scholar
  60. Müller, G, G. Irion & U. Förstner, 1972. Diagenesis of inorganic Ca−Mg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.Google Scholar
  61. Müller G. & F. Wagner, 1978. Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. In A. Matter & M. E. Tucker (eds), Modern and ancient lake sediments. Int. Ass. Sediment. Spec. Pub. 2: 57–81.Google Scholar
  62. Muzzolini, A., 1985. Les climats au Sahara et sur ses bordures, du Pleistocene final a l'aride actuel. Empuries 47: 8–27.Google Scholar
  63. Nijs, R., 1986. The geology of Malha crater (Darfur, Sudan). GEO-ECO-TROP 10, 1–10.Google Scholar
  64. O'Sullivan, P. E., 1983. Annually-laminated lake sediments and the study of Quaternary environmental changes — A review. Quat. Sci. Rev. 1: 245–313.Google Scholar
  65. Pabst, A., 1973. The crystallography and structure of eitelite, Na2Mg(CO3)2. Am. Mineral. 58: 211–217.Google Scholar
  66. Pachur, H. J. & S. Kröpelin, 1987. Wadi Howar: Paleoclimatic ence from an extinct river system in the southeastern Sahara. Science 237: 298–300.Google Scholar
  67. Pachur, H. J., H. P. Roper, S. Kröpelin & M. Goschin, 1987. Late Quaternary hydrography of the eastern Sahara. Berliner geowiss. Abh. (A), 75.2: 331–384.Google Scholar
  68. Pinder L. C. V. & F. Reiss, 1983. The larvae of Chironominae (Diptera: Chironomidae) of the holarctic region. In T. Wiederholm (ed.), Chironomidae of the Holarctic region, I: Larvae. Ent. scand. Suppl. 19: 293–435.Google Scholar
  69. Reitsema, R. H., 1980. Dolomite and nahcolite formation in organic rich sediments: isotopically heavy carbonates. Geochim. Cosmochim. Acta 44: 2045–2049.Google Scholar
  70. Renberg, I., 1981. Formation, structure and visual appearance of iron-rich, varved lake sediments. Verh. int. Ver. Limnol. 21: 94–101.Google Scholar
  71. Ritchie, J. C., C. H. Eyles & C. V. Haynes, 1985. Sediment and pollen evidence for an early to mid Holocene humid period in the eastern Sahara. Nature 314: 352–355.Google Scholar
  72. Ritchie, J. C. & C. V. Haynes, 1987. Holocene vegetation zonation in the eastern Sahara. Nature 330: 645–647.Google Scholar
  73. Sandford, K. S., 1935a. Sources of water in the north-west Sudan. Geogr. J. 85: 412–431.Google Scholar
  74. Sandford, K. S., 1935b. Geological observations on the northwest frontiers of the Anglo-Egyptian Sudan and the adjoining part of the southern Libyan Desert. Quart. J. Geol. Soc. London 91: 323–381.Google Scholar
  75. Smith, G. I., I. Friedman & R. J. McLaughlin, 1987. Studies of Quaternary saline lakes — III. Mineral, chemical and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969–1971. Geochim. Cosmochim. Acta 51: 811–827.Google Scholar
  76. Spreckels, B., 1984. Morphodynamik im Meidob-Bergland: Norddarfur und Möglichkeiten der Landnutzung. In H. G. Mensching (ed.), Beitrage zur Morphodynamik im Relief des Jebel-Marra-Massivs und in seinem Vorland (Darfur/Republik Sudan). Akademie der Wissenschaften in Göttingen, Hamburg: 129–146.Google Scholar
  77. Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshw. Biol. 3: 53–76.Google Scholar
  78. Thompson, R. S., L. J. Toolin, R. M. Forester & R. J. Spencer, 1990. Accelerator mass spectrometer (AMS) radiocarbon dating of Pleistocene lake sediments in the Great Basin. Palaeogeogr., Palaeoclimatol., Palaeoecol. 78: 301–313.Google Scholar
  79. Tiercelin, J. J., A. Vincens, C. E. Barton, P. Carbonel, J. Casanova, G. Delibrias, F. Gasse, E. Grosdidier, J. P. Herbin, A. Y. Huc, S. Jardiné, J.Le Fournier, F. Mélières, R. B. Owen, P. Pagé, C. Palacios, H. Paquet, G. Péniguel, J. P. Peypouquet, J. F. Raynaud, R. W. Renaut, P.de Renéville, J. P. Richert, R. Riff, P. Robert, C. Seyve, M. Vandenbroucke & G. Vidal, 1987. Le demi-graben de Baringo-Bogoria, Rift Gregory, Kenya. 30 000 ans d'histoire hydrologique et sédimentaire. Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine 11: 249–540.Google Scholar
  80. Timms, B. V., 1983. A study of benthic communities in some shallow saline lakes of western Victoria, Australia. Hydrobiologia 105: 165–178.Google Scholar
  81. Tudorancea, C., R. M. Baxter & C. H. Fernando, 1989. A comparative limnological study of zoobenthic associations in lakes of the Ethiopian Rift Valley. Arch. Hydrobiol. Suppl. 83: 121–174.Google Scholar
  82. Vail, I. R., 1972. Jebel Marra, a dormant volcano in Darfur Province, Western Sudan. Bull. Volcanol. 36: 251–265.Google Scholar
  83. Walker, K. F. & G. E. Likens, 1975. Meromixis and a reconsidered typology of lake circulation patterns. Verh. int. Ver. Limnol. 19: 442–458.Google Scholar
  84. Walkley, A. & I. A. Black, 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29–38.Google Scholar
  85. Whiteman, A. J., 1971. The Geology of the Sudan Republic. Clarendon Press, Oxford, 290 pp.Google Scholar
  86. Wickens G. E., 1976. The flora of Jebel Marra (Sudan Republic) and its geographical affinities. Kew Bulletin Additional Series Vol. 5, 368 pp.Google Scholar
  87. Wood, R. B., R. M. Baxter & M. V. Prosser, 1984. Seasonal and comparative aspects of chemical stratification in some tropical crater lakes, Ethiopia. Freshw. Biol. 14: 551–573.Google Scholar
  88. Wood, R. B., M. V. Prosser & R. M. Baxter, 1976. The seasonal pattern of thermal characteristics of four of the Bishoftu crater lakes, Ethiopia. Freshw. Biol. 6: 519–530.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Florias Mees
    • 1
  • Dirk Verschuren
    • 2
  • Roger Nijs
    • 1
  • Henri Dumont
    • 2
  1. 1.Department of Mineralogy, Petrography and Micropedology, Geological InstituteState University of GhentGhentBelgium
  2. 2.Institute of Animal EcologyState University of GhentGhentBelgium

Personalised recommendations