Physics and Chemistry of Minerals

, Volume 22, Issue 7, pp 437–442

Premelting and high-temperature diffusion of Ca in synthetic diopside: An increase of the cation mobility

  • A. Dimanov
  • J. Ingrin


A study of Ca self-diffusion along the b axis in synthetic (iron free) diopside single crystal was performed at temperatures ranging from 1273 K to 1653 K. Diffusion profiles of 44Ca were measured using α-particles Rutherford Backscattering (α-RBS) micro analysis. We unambiguously find two distinct diffusional regimes, characterized by activation enthalpies H = 280 ± 26 kJ/mol and H = 951 ± 87 kJ/mol at temperatures lower and upper than 1515 K, respectively. This change of diffusion regime takes place near the onset of premelting as detected in calorimetric measurements and can be interpreted in terms of enhanced formation of Frenkel point defects with an activation enthalpy of formation of 1524 ± 266 kJ/mol (Hf/2 = 762 kJ/mol), in accordance with our high-temperature diffusion data. If premelting of diopside is actually related to Ca-Frenkel point defect concentration, this concentration could reach up to few mole percents close to the melting temperature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adda Y, Philibert J (1966) La diffusion dans les solides. Tome I. Presses Universitaires de France, Paris, 665 ppGoogle Scholar
  2. Brady JB, McCallister RH (1983) Diffusion data for clinopyroxenes from homogenization and self-diffusion experiments. Am Mineral 68:95–105Google Scholar
  3. Brass AM (1989) Molecular dynamics study of the defect behaviour in fluorite structure crystals close to the superionic transition. Phil Mag 59:843–859Google Scholar
  4. Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, Jadeite, spodumene and ureyite. Am Mineral 58:594–618Google Scholar
  5. Connoly C, Muehlenbachs K (1988) Contrasting oxygen diffusion in nepheline, diopside and other silicates and their relevance to isotopic systematics in meteorites. Geochim Cosmochim Acta 52:1585–1591Google Scholar
  6. Dimanov A (1995) Auto-diffusion du calcium dans le diopside monocristallin. Thèse. Université de Paris-Sud Orsay, Orsay, pp 220Google Scholar
  7. Doolittle LR (1986) A semiautomatic algorithm for rutherford backscattering spectra. Nucl Instr Meth B 15:227–231Google Scholar
  8. Farver J (1989) Oxygen diffusion in diopside with application to cooling rate determinations. Earth Planet Sci Lett 92:386–396Google Scholar
  9. Fiquet G, Gillet Ph, Riebet P (1992) Anharmonicity and high-temperature heat capacity of crystals: the exemples of Ca2GeO4, Mg2GeO4 and CaMgGeO4 olivines. Phys Chem Minerals 18:469–479Google Scholar
  10. Houlier B, Cheraghmakani M, Jaoul O (1990) Silicon diffusion in San Carlos olivine. Phys Earth Planet Int 62:329–340Google Scholar
  11. Huebner JS, Voigt DE (1988) Electrical conductivity of diopside: evidence for oxygen vacancies. Am Mineral 73:1235–1254Google Scholar
  12. Hutchings MT, Clausen K, Dickens MD, Hayes W, Kjems JK, Schnabel PG, Smith C (1984) Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques. J Phys C Solid State Phys 17:3903–3940Google Scholar
  13. Jaoul O, Sautter V, Abel F (1991) Nuclear microanalysis: A powerful tool for measuring low atomic diffusivity with mineralogical applications. In: Ganguly J (eds) Diffusion, Atomic Ordering, and Mass Transport: Selected Problems in Geochemistry. Advances in Physical Geochemistry Vol 8. Springer-Verlag, Berlin, pp 198–200Google Scholar
  14. Lange RA, De Yoreo JJ, Navrotsky A (1991) Scanning calorimetric measurement of heat capacity during incongruent melting of diopside. Am Mineral 76:904–912Google Scholar
  15. L'Hoir A, Schmaus D, Cawley J, Jaoul O (1981) Depth profiling light nuclei in single crystals: A combined nuclear reaction and RBS. Technique to minimize unwanted channeling effects. Nucl Instr Meth 191:357–366Google Scholar
  16. Richet P, Fiquet G (1991) High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2. J Geophys Res 96:445–456Google Scholar
  17. Richet P, Ingrin J, Mysen BO, Courtial P, Gillet Ph (1994) Premelting effects in minerals an experimental study. Earth Planet Sci Lett 121:589–600Google Scholar
  18. Ryerson FJ, McKeegan KD (1994) Determination of oxygen selfdiffusion in akermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions. Geochim Cosmochim Acta 58:3713–3734Google Scholar
  19. Sneeringer M, Hart SR, Shimizu N (1984) Strontium and samarium diffusion in diopside. Geochim Cosmochim Acta 48:1589–1608Google Scholar
  20. Ubbelohde AR (1965) Melting and crystal structure. Clarendon press, Oxford, 325 ppGoogle Scholar
  21. Ubbelohde AR (1978) The molten state of matter. John Wiley and Sons, New YorkGoogle Scholar
  22. York D (1966) Least-squares fitting of a straight line. Can J Phys 44:1079–1086Google Scholar
  23. Ziegler D, Navrotsky A (1986) Direct measurement of the enthalpy of fusion of diopside. Geochim Cosmochim Acta 50:2461–2466Google Scholar
  24. Ziegler JF (1977) Helium, stopping powers and ranges in all elements. Pergamon, New York, 367 ppGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. Dimanov
    • 1
  • J. Ingrin
    • 1
  1. 1.Laboratoire de Géophysique et Géodynamique Interne, URA 1369, Bâtiment 510, Université Paris SudOrsayFrance

Personalised recommendations