Advertisement

Physics and Chemistry of Minerals

, Volume 18, Issue 5, pp 294–301 | Cite as

Thermal expansion of SrZrO3 and BaZrO3 perovskites

  • Yusheng Zhao
  • Donald J. Weidner
Article

Abstract

High-temperature X-ray diffraction studies of SrZrO3 and BaZrO3 perovskites have been carried out to 1200° C. The diffraction patterns are analyzed with Rietveld method so as to refine the unit cell dimensions. The volumetric thermal expansion coefficient are observed to be 2.98*10-5K-1 for orthorhombic Pbnm phase, 3.24*10-5K-1 for orthorhombic Cmcm phase, 3.75*10-5K-1 for tetragonal I4/mcm phase of SrZrO3 perovskite, and 2.06*10-5K-1 for cubic Pm3m phase of BaZrO3 perovskite, respectively. The linear thermal expansion coefficients of SrZrO3 perovskite show considerable anisotropy of α a c b for orthorhombic Pbnm phase, which reflect the decrease of distortion of the perovskite. It is demonstrated that thermal expansion of the centrosymmetrically distorted ABX3 perovskite can be empirically expressed as a combination of the changes of [B-X] bond length and tilting angle of BX6 octahedral framework. The octahedral tilting is considered to be the primary order parameter for the ferroelastic type of structural phase transitions in perovskite. Thermodynamically, the tilting induced volume change denotes the “excess volume” and the corresponding thermal expansion represents the “excess thermal expansion” for the lower symmetry phase with respect to its prototype of the cubic perovskite.

Keywords

Thermal Expansion Perovskite Thermal Expansion Coefficient Structural Phase Transition Linear Thermal Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov KS (1976) The sequences of structural phase transitions in perovskites, Ferroelectrics 16:801–805Google Scholar
  2. Aleksandrov KS (1978) Mechanisms of the ferroelectric and structural phase transitions. Structural distortion in perovskites, Ferroelectrics 20:61–67Google Scholar
  3. Ahtee A, Ahtee M, Glazer AM, Hewat AW (1976) The structure of orthorhombic SrZrO3 by neutron powder diffraction, Acta Crystallogr B32:3243–3246Google Scholar
  4. Ahtee M, Glazer AM, Hewat AW (1978) High-temperature phases of SrZrO3, Acta Crystallogr B34:752–758Google Scholar
  5. Carlsson L (1967) High-temperature phase transitions in SrZrO3, Acta Crystallogr 23:901–905Google Scholar
  6. Cowley RA (1976) Acoustic phonon instabilities and structural phase transitions, PHys Rev B13:4877–4885Google Scholar
  7. Cowley RA, Bayers WJL, Dolling G (1969) Relationship of normal modes of vibration of strontium titanate and its antiferroelectric phase transition at 110 K. Solid State Commun 1:181–184Google Scholar
  8. Foëx M, Traverse J-P, Coutures J, Étude de la CR (1967) Structure cristalline des zirconates alcalino-terreux à haute température, Acad Sci Paris t. 264:1837–1840Google Scholar
  9. Glazer AM (1972) The classification of tilted octahedral in perovskites, Acta Crystallogr B28:3384–3392Google Scholar
  10. Glazer AM (1975) Simple ways of determining perovskite structure Acta Crystallogr A31:756–763Google Scholar
  11. Hazen RM, Finger LW (1982) Comparative crystal chemistry: temperature, pressure, composition and the variation of crystal structure. Wiley New York, pp. 115–164Google Scholar
  12. Hirotsu S, Suzuki T (1978) Elastic constants and thermal expansion of CsPbCl3, J Phys Soc Jpn 44:1604–1611Google Scholar
  13. Knittle E, Jeanloz R, Smith GL (1986) Thermal expansion of silicate perovskite and stratification of the Earth's mantle, Nature 319:214–216Google Scholar
  14. Kudoh Y, Wolf GH, Buseck PR, Takeda H, Ito E (1990) Stressinduced ferroelastic behavior in MgSiO3 perovskite, preprintGoogle Scholar
  15. Landau LD, Lifshitz EM (1969), Statistical Physics, 2nd edn, Pergamon Press, OxfordGoogle Scholar
  16. Larson AC, Von Dreele RB (1988) GSAS manual, Report LAUR 86-748, Los Alamos National LaboratoryGoogle Scholar
  17. Megaw HD (1971) Crystal structures and thermal expansion, Mater Res Bull 6:1007–1018Google Scholar
  18. Midorikawa M, Ishibashi Y, Takagi Y (1976) Dilatometric and pressure studies of phase transitions in CsSrCl3, J Phys Soc Jpn 41:2001–2004Google Scholar
  19. Ohama N, Sakashita H, Okazaki A (1984) The temperature dependence of the lattice constant of SrTiO3 around the 105 K transition, Phase Transition 4:81–90Google Scholar
  20. O'Keeffe M, Hyde BG (1977) Some structures topologically related to cubic perovskite (E21, ReO3) (D09) and Cu3Au (L12), Acta Crystallogr B33:3802–3813Google Scholar
  21. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structure, J Appl Cryst 2:65–71Google Scholar
  22. Ross NL, Hazen RM (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K, Phys Chem Minerals 16:415–420Google Scholar
  23. Rousseau M, Gesland JY, Julliard J, Nouet J, Zarembowitch J, Zarembowitch A (1975) Crystallographic, elastic, and Raman Scattering investigations of structural phase transitions in RbCdF3 and TlCdF3, Phys Rev B 12:1579–1590Google Scholar
  24. Salje E (1989) Characteristics of perovskite-related materials, Phil Trans R Soc Lond A328:409–416Google Scholar
  25. Sato M, Soejima Y, Ohama N, Okazaki A, Scheel HJ, Müller KA (1985) The lattice constant vs. temperature relation around the 105 K transition of a flux-grown SrTiO3 crystal, Phys Transitions 5:207–218Google Scholar
  26. Wadhawan VK (1982) Ferroelasticity and related properties of crystals, Phase Transitions 3:3–103Google Scholar
  27. Wang Y, Guyot F, Yeganeh-Haeri A, Liebermann RC (1990) Twinning in MgSiO3 perovskite, Science 248:468–471Google Scholar
  28. Wang Y, Weidner DJ, Liebermann RL, Liu X, Ko J, Vaughan MT, Zhao Y, Yeganeh-Haeri A, Pacalo REG (1991) Phase transition and thermal expansion of perovskite, Science 251:410–413Google Scholar
  29. Wolf GH, Bukowinski MST (1987) Theoretical study of the structural and thermoelastic properties of MgSiO3 and CaSiO3 perovskites: Implications for lower mantle composition, in Manghnani MH, Syono Y (eds): High Pressure Research in Mineral Physics, Terra Sci. Publ., Tokyo, 313–331Google Scholar
  30. Yeganeh-Haeri A, Weidner DJ, Ito E (1989) Single-crystal elastic modules of magnesium metasilicate perovskite. In: Navrotsky A, Weidner D (eds.) Perovskite: A Structure of Great Interest to Geophysics and Material Science, A.G.U. Geophys Mono 45:13–35Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Yusheng Zhao
    • 1
  • Donald J. Weidner
    • 1
  1. 1.Center for High Pressure Research, Mineral Physics Institute, Department of Earth and Space SciencesState University of New York at Stony BrookStony BrookUSA

Personalised recommendations