Advertisement

Biological Cybernetics

, Volume 73, Issue 6, pp 483–497 | Cite as

The ant's path integration system: a neural architecture

  • Georg Hartmann
  • Rüdiger Wehner
Original Papers

Abstract

A model is developed by which path integration as observed in many animal species could be implemented neurobiologically. The proposed architecture is able to describe the navigation behaviour of Cataglyphis ants, and that of other social insects, at the level of interacting neurons. The basic idea of this architecture is the concept of activity patterns travelling along neural chains. Although experimental evidence has yet to be provided, this concept seems biologically plausible and not limited to the navigation problem. Neural chains are able to represent variables by activity patterns with high accuracy and temporal stability. Moreover, they are able to integrate incremental signals with high precision. Cyclical chains of neurons show superior performance as soon as cyclical variables are to be represented and integrated. Finally, representation of cyclical variables by travelling activity peaks allows simple approximations of goniometric functions as they are used in path integration systems.

Keywords

High Precision Activity Pattern Animal Species Temporal Stability Superior Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benhamou S, Sauve JP, Bovet P (1990) Spatial memory in large-scale movements: efficiency and limitation of the egocentric coding process. J Theor Biol 145:1–12Google Scholar
  2. Bisetzky AR (1957) Die Tänze der Bienen nach einem Fussweg zum Futterplatz. Z Vergl Physiol 40:264–288Google Scholar
  3. Collett TS, Dillmann E, Giger A, Wehner R (1992) Visual landmarks and route following in desert ants. J Comp Physiol [A] 170: 435–442Google Scholar
  4. Eckmiller R (1987) Computational model of the motor program generator for pursuit. J Neurosci Methods 21:127–138Google Scholar
  5. French AS, Stein RB (1970) A flexible neural analog using integrated circuits. IEEE Trans Biomed Eng 17:248–253Google Scholar
  6. Gallistel CR (1990) The organization of learning. MIT Press, Cambridge, MassGoogle Scholar
  7. Görner P (1958) Die optische und kinästhetische Orientierung der Trichterspinne Agelena labyrinthica. Z Vergl Physiol 41:111–153Google Scholar
  8. Görner P, Claas B (1985) Homing behaviour and orientation in the funnel-web spider, Agelena labyrinthica. In: Barth FG (eds) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 275–297Google Scholar
  9. Gould JL (1986) The locale map of honey bees: do insects have cognitive maps? Science 232:861–863Google Scholar
  10. Hartmann G (1992) Motion induced transformations of spatial representations: mapping 3D information onto 2D. Neural Networks 5:823–834Google Scholar
  11. Jander R (1957) Die optische Richtungsorientierung der Roten Waldameise (Formica Rufa). Z Vergl Physiol 40:162–238Google Scholar
  12. Lindauer M (1963) Kompassorientierung. Ergeh Biol 26:158–181Google Scholar
  13. Michel B, Wehner R (1995) Phase-specific activation of landmark memories during homeward-bound vector navigation in desert ants, Cataglyphis fortis. Proc Neurobiol Conf Göttingen 23(1):41Google Scholar
  14. Mittelstaedt H (1962) Control systems of orientation in insects. Annu Rev Entomol 7:177–198Google Scholar
  15. Mittelstaedt H (1985) Analytical cybernetics of spider navigation. In: Barth FG (eds) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 298–316Google Scholar
  16. Mittelstaedt ML, Mittelstaedt H (1973) Mechanismen der Orientierung ohne richtende Aussenreize. Fortschr Zool 21:46–58Google Scholar
  17. Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67:566Google Scholar
  18. Müller M (1989) Mechanismus der Wegintegration bei Cataglyphis fortis (Hymenoptera, Insecta). PhD thesis, University of ZürichGoogle Scholar
  19. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290Google Scholar
  20. O'Keefe J (1991) An allocentric spatial model for the hippocampal cognitive map. Hippocampus 1(3): 230–235Google Scholar
  21. Ronacher B, Manetsch D, Wehner R (1994) Self-induced optic flow cues influence the assessment of travel distance in the ant Cataglyphis fortis Google Scholar
  22. Ronacher B, Wehner R (1995) Desert ants Cataglyphis fortis use selfinduced optic flow to measure distances travelled. J Comp Physiol A 177:21–27Google Scholar
  23. Saint-Paul Uv (1982) Do geese use path integration for walking home? In: Papi F, Walraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 298–307Google Scholar
  24. Sauve JP (1989) L'orientation spatiale: formalisation d'un modèle de mémorisation égocentrée et expérimentation chez l'homme. PhD thesis, University of Aix-MarseilleGoogle Scholar
  25. Schäfer M, Wehner R (1993) Loading does not affect measurement of walking distance in desert ants, Cataglyphisfortis. Verh Dtsch Zool Ges 86:270Google Scholar
  26. Seguinot V, Maurer R, Etienne AS (1993) Dead reckoning in a small mammal: the evaluation of distance. J Comp Physiol [A] 173:103–113Google Scholar
  27. Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148Google Scholar
  28. Touretzki T (1993) Neural representation of space using sinusoidal arrays. Neural Comput 5:869–884Google Scholar
  29. Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801Google Scholar
  30. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (eds) Handbook of sensory physiology, vol. VII/6c. Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  31. Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132Google Scholar
  32. Wehner R (1987a) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). In: Pasteels JM, Deneubourg J-L (eds) From individual to collective behavior in social insects. Birkhäuser, Basel, pp 15–42Google Scholar
  33. Wehner R (1987b) Matched filters': neural models of the external world. J Comp Physiol [A] 161:511–531Google Scholar
  34. Wehner R (1992) Arthropods. In: Papi F (eds) Animal Homing. Chapman and Hall, London, pp 45–144Google Scholar
  35. Wehner R (1994) The polarization-vision project: championing organismic biology. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptation. G Fischer, Stuttgart, pp 103–143Google Scholar
  36. Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Akad Wiss Lit Mainz, Math Naturwiss Kl. Fischer, StuttgartGoogle Scholar
  37. Wehner R, Menzel R (1990) Do insects have cognitive maps? Annu Rev Neurosci 13:403–414Google Scholar
  38. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142:315–338Google Scholar
  39. Wehner R, Wehner S (1986) Path integration in desert ants: approaching a long standing puzzle in insect navigation. Monitore Zool Ital NS) 20:309–331Google Scholar
  40. Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne's thread? Ethol Ecol Evol 2:27–48Google Scholar
  41. Wittmann T (1994) A neurobiologically plausible model of path integration. In: Proceedings of the 22nd Göttingen Neurobiology Conference, p 868Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Georg Hartmann
    • 1
  • Rüdiger Wehner
    • 2
  1. 1.Heinz Nixdorf Institut, Grundlagen der Elektrotechnik, Universität-GH PaderbornPaderbornGermany
  2. 2.Zoologisches Institut der Universität ZürichZürichSwitzerland

Personalised recommendations