The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency

Summary

A chromaticity diagram which plots the 3 photoreceptor excitations of trichromatic colour vision systems at an angle of 120° is presented. It takes into acount the nonlinear transduction process in the receptors. The resulting diagram has the outline of an equilateral hexagon. It is demonstrated by geometrical means that excitation values for any type of spectrally opponent mechanism can be read from this diagram if the weighting factors of this mechanism add up to zero. Thus, it may also be regarded as a general representation of colour opponent relations, linking graphically the Young-Helmholtz theory of trichromacy and Hering's concept of opponent colours. It is shown on a geometrical. basis that chromaticity can be coded unequivocally by any two combined spectrally opponent mechanisms, the main difference between particular mechanisms being the extension and compression of certain spectral areas. This type of graphical representation can qualitatively explain the Bezold-Brücke phenomenon. Furthermore, colour hexagon distances may be taken as standardized perceptual colour distance values for trichromatic insects, as is demonstrated by comparison with behavioural colour discrimination data of 3 hymenopteran species.

This is a preview of subscription content, log in to check access.

References

  1. Backhaus W (1991a) Color opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397

    Google Scholar 

  2. Backhaus W (1991b) Bezold Brücke colour shifts exist in the bee as predicted. In: Elsner N, Penzlin H (eds) Synapse — transmission — modulation. Proceedings of the 19th Göttingen Neu-robiology Conference. Georg Thieme, Stuttgart, p 558

    Google Scholar 

  3. Backhaus W, Menzel R (1987) Color distance derived from a receptor model of color vision in the honey bee. Biol Cybern 55:321–331

    Google Scholar 

  4. Backhaus W, Menzel R, Kreißl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56:293–304

    Google Scholar 

  5. Buchsbaum G, Gottschalk A (1983) Trichromacy, opponent colour coding and optimum colour information transmission in the retina. Proc R Soc Lond B 220:89–113

    Google Scholar 

  6. Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universl strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170:545–563

    Google Scholar 

  7. Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478

    Google Scholar 

  8. Guth LS, Massof RW, Benzschawel T (1980) A vector model for normal and dichromatic color vision. J Opt Soc Am 70:197–212

    Google Scholar 

  9. Helversen O von (1972) Zur spektralen Unterschiedlichkeitsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Google Scholar 

  10. Hurvich LM, Jameson D (1955) Some quantitative aspects of an opponent colour theory. II. Brightness, saturation and hue in normal and dichromatic vision. J Opt Soc Am 45:602–616

    Google Scholar 

  11. Küppers H (1976) Die Logik der Farbe. Callway. München

    Google Scholar 

  12. Küppers H (1977) Farbe, Ursprung, Systematik, Anwendung. Callway, München

    Google Scholar 

  13. Laughlin SB (1981) Neural principles in the peripheral visual system of invertebrates. In: Autrum HJ (ed) Invertebrate visual centers and behaviour (Handbook of sensory physiology, vol. VII/6b). Springer, Berlin Heidelberg New York, pp 133–280

    Google Scholar 

  14. Lipetz LE (1971) The relation of physiological and psychological aspects of sensory intensity. In: Loewenstein WR (ed) Principles of receptor physiology. (Handbook of sensory physiology, vol I). Springer, Berlin Heidelberg New York, pp 191–225

    Google Scholar 

  15. MacLeod DIA, Boynton RM (1979) Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am 69:1183–1186

    Google Scholar 

  16. Menzel R, Steinmann E, De Souza JM, Backhaus W (1988) Spectral sensitivity of photoreceptors and colour vision in the solitary bee, Osmia rufa. J Exp Biol 136:35–52

    Google Scholar 

  17. Menzel R, Ventura DF, Hertel H, de Souza JM, Greggers U (1986) Spectral sensitivity of photoreceptors in insect compound eyes: comparison of species and methods. J Comp Physiol A 158:165–177

    Google Scholar 

  18. Menzel R, Ventura DF, Werner A, Joaquim LCM, Backhaus W (1989) Spectral sensitivity of single photoreceptors and color vision in the stingless bee, Melipona quadrifasciata. J Comp Physiol A 166:151–164

    Google Scholar 

  19. Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction, vol VI. The perception of colour. MacMillan Press, Houndsmills, pp 262–293

    Google Scholar 

  20. Naka KI, Rushton WAH (1966) S-potentials from color units in the retina of the fish (Cyprinidae). J Physiol 185:536–555

    Google Scholar 

  21. Peitsch D, Backhaus W, Menzel R (1989) Color vision systems in hymenopterans; a comparative study. In: Erber J, Menzel R, Pflüger HJ, Todt D (eds) Neural mechanisms of behavior. Thieme, Stuttgart New York, p 163

    Google Scholar 

  22. Rodieck RW (1973) The vertebrate retina — principles of structure and function. Freeman and Company, San Francisco

    Google Scholar 

  23. Schroedinger E (1920a) Grundlinien einer Theorie der Farbenmetrik im Tagessehen. Ann Phys 63:397–426, 427–456

    Google Scholar 

  24. Schroedinger E (1920b) Grundlinien einer Theorie der Farbenmetrik im Tagessehen. Die Farbenmetrik II. Teil: Höhere Farbenmetrik (eigentliche Metrik der Farbe). Ann Phys 63:481–520

    Google Scholar 

  25. Valberg A, Seim T, Lee BB, Tryti J (1986) Reconstruction of equidistant color space from responses of visual neurones of macaques. J Opt Soc Am A 3:1726–1734

    Google Scholar 

  26. Werner JS, Wooten BR (1979) Opponent chromatic mechanisms: Relation to photopigments and hue naming. J Opt Soc Am 69:422–434

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chittka, L. The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170, 533–543 (1992). https://doi.org/10.1007/BF00199331

Download citation

Key words

  • Colour vision
  • Chromaticity diagrams
  • Opponent processes
  • Colour computation
  • Bezold
  • Brücke phenomenon