Advertisement

Physics and Chemistry of Minerals

, Volume 18, Issue 1, pp 47–52 | Cite as

29Si and 27Al MAS NMR spectroscopy of mullite

  • L. H. Merwin
  • A. Sebald
  • H. Rager
  • H. Schneider
Article

Abstract

A 29Si and 27Al magic angle spinning nuclear magnetic resonance study is reported for differently synthesized mullites. The 29Si MAS NMR spectra of all samples are essentially identical. They consist of a main resonance at -86.8 ppm, a shoulder around -90 ppm and a second resonance at -94.2 ppm. The main resonance is interpreted as being due to a sillimanite-type geometry around Si and the second one is tentatively assigned to a Si environment typical for mullite. The 27Al MAS NMR spectra of sinter- and fused-mullite measured at different Larmor frequencies revealed clearly the presence of three distinct Al sites in mullite, i.e. of octahedral (M1), tetrahedral (M2) and distorted tetrahedral (Al*) sites.

Keywords

Nuclear Magnetic Resonance Mineral Resource Material Processing Magic Angle Nuclear Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alemany LB, Kirker GW (1986) First observation of 5-coordinate aluminum by MAS 27Al NMR in well-characterized solids. J Am Chem Soc 108:6158–6162Google Scholar
  2. Angel RJ, Prewitt CT (1986) Crystal structure of mullite: A re-examination of the average structure. Am Mineral 71:1476–1482Google Scholar
  3. Bertram UC, Heine V, Jones IL, Price GD (1990) Computer modeling of Al/Si ordering in sillimanite. Phys Chem Minerals 17:326–333Google Scholar
  4. Blinc R (1981) Magnetic Resonance and Relaxation in Structural Incommensurate Systems. Phys Rep 79:331–398Google Scholar
  5. Burnham CW (1963) Refinement of the crystal structure of sillimanite. Z Kristallogr 115:127–148Google Scholar
  6. Burnham CW (1964) Crystal structure of mullite. Carnegie Inst. Wash. Year Book 63:223–227Google Scholar
  7. Cameron WE (1977) Mullite: A substituted alumina. Am Mineral 62:747–755Google Scholar
  8. Cruickshank MC, Dent Glasser LS, Barri SAI, Poplett IJF (1986) Penta-coordinated aluminum: a solid state 27Al NMR study. J Chem Soc D 23–24Google Scholar
  9. Dec SF, Maciel GE (1990) High-speed MAS NMR of quadrupolar nuclides at high magnetic fields. J Magn Reson 87:153–159Google Scholar
  10. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, New YorkGoogle Scholar
  11. Holm JL, Kleppa OJ (1966) The thermodynamic properties of the aluminium silicates. Am Mineral 51:1608–1622Google Scholar
  12. Lippmaa E, Samoson A, Mägi M (1986) High-resolution 27Al NMR of Aluminosilicates. J Am Chem Soc 108:1730–1735Google Scholar
  13. McConnell JDC, Heine V (1985) Incommensurate structure and stability of mullite. Phys Rev B 31:6140–6143Google Scholar
  14. Merwin LH, Sebald A, Scifert F (1989) The Incommensurate-commensurate Phase Transition in Akermanite, Ca2MgSi2O7, Observed by in-situ 29Si MAS NMR spectroscopy. Phys Chem Minerals 16:752–756Google Scholar
  15. Morimoto N (1990) Modulated structure and vacancy ordering in mullite. Ceram Trans 6:115–124Google Scholar
  16. Rocha J, Klinowski J (1990) 29Si and 27Al Magic-Angle-Spinning NMR studies of the thermal transformation of kaolinite. Phys Chem Minerals 17:179–186Google Scholar
  17. Saalfeld H (1979) The domain structure of 2∶1 mullite (2Al2O3 1SiO2). N Jb Mineralogie Abh 134:306–316Google Scholar
  18. Saalfeld H, Guse W (1981) Structure refinement of 3∶2 mullite (3Al2O3 2SiO2). N Jb Mineralogie Mh 145–150Google Scholar
  19. Sanz J, Madami A, Serratosa JM, Moya JS and Aza S (1988) Aluminum-27 and Silicon-29 Magic-Angle-Spinning Nuclear Magnetic Resonance Study of the Kaolinite-Mullite Transformation. J Am Ceramic Soc 10:C418–421Google Scholar
  20. Schneider H (1986) Formation, properties, and high-temperature behavior of mullite. Habilitation Faculty of Chemistry, University of Münster 1–148Google Scholar
  21. Schneider H (1990) Transition metal distribution in mullite. Adv Ceram Trans 6:135–158Google Scholar
  22. Sheriff BL, Grundy HD (1988) Calculations of 29Si MAS NMR chemical shift from silicate mineral structure. Nature 332:819–820Google Scholar
  23. Turner GL, Kirkpatrick RJ, Risbud SH, Oldfield E (1987) Multinuclear magic-angle sample spinning nuclear magnetic resonance spectroscopic studies of crystalline and amorphous ceramic materials. Am Ceram Soc Bull 66:656–663Google Scholar
  24. Yasumori A, Iwasaki M, Kawazoe H, Yamane M, Nakamura Y (1990) Nuclear magnetic resonance study of the structure of aluminosilicate gel and glass. Phys Chem Glass 31:1–9Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • L. H. Merwin
    • 1
  • A. Sebald
    • 1
  • H. Rager
    • 2
  • H. Schneider
    • 3
  1. 1.Bayerisches Geoinstitut, Universität BayreuthBayreuthFederal Republic of Germany
  2. 2.Institut für Mineralogie, Petrologie und Kristallographie der UniversitätMarburgFederal Republic of Germany
  3. 3.Deutsche Forschungsanstalt für Luft- und Raumfahrt, Institut für Werkstoff-ForschungKölnFederal Republic of Germany

Personalised recommendations