Advertisement

Physics and Chemistry of Minerals

, Volume 19, Issue 2, pp 121–126 | Cite as

A combined temperature dependent57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol'danskii-Karyagin effect

  • C. A. Geiger
  • Th. Armbruster
  • G. A. Lager
  • K. Jiang
  • W. Lottermoser
  • G. Amthauer
Article

Abstract

Synthetic almandine garnet, Fe3Al2Si3O12, has been studied by temperature — dependent single crystal X-ray diffraction and57Fe Mössbauer spectroscopy. The Fe2+ doublet in almandine is characterized by a small asymmetry between the high and low-velocity peaks that decreases in magnitude with decreasing temperature from 420 to 15 K. The X-ray results show that the Fe2+ cation is dynamically disordered with an anisotropic motion within the eight-coordinated site in garnet. The magnitudes of the X-ray determined mean-square-vibrational amplitudes of this motion parallel,x, and perpendicular,x, to the principle axes of the electric field gradient give a calculated angular dependence of the electric quadrupole interaction of theI1/2 toI3/2 transitions that agree with the experimentally measured peak ratios. This is the first recognition of anisotropic recoil free fraction of57Fe in silicates.

Keywords

Electric Field Gradient Quadrupole Interaction Electric Quadrupole Almandine Motion Parallel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amthauer G, Annersten H, Hafner SS (1976) The Mössbauer spectrum of57Fe in silicate garnets. Z Kristallogr 143:14–55Google Scholar
  2. Armbruster Th (1986) Crystal structure refinement and thermal expansion of a Li, Na, Be-cordierite between 100 and 550 K. Z Kristallogr 174:205–217Google Scholar
  3. Armbruster Th, Bürgi HB, Kunz M, Gnos E, Brönnimann S, Lienert C (1990) Variation of displacement parameters in structure refinements of low albite. Amer Mineral 75:135–140Google Scholar
  4. Armbruster Th, Geiger CA, Lager GA (1992) Single crystal X-ray structure study of synthetic pyrope-almandine garnets at 100 and 293 K. Amer Mineral 77:518–527Google Scholar
  5. Bancroft GM, Maddock AG, Burns RG (1967) Application of the Mössbauer effect to silicate mineralogy. I. Iron silicates of known crystal structure. Geochim Cosmochim Acta 31:2219–2246Google Scholar
  6. Born L, Zemann J (1964) Abstandsberechnungen und gitterenerge-ische Berechnungen an Granaten. Beitr Mineral Petrog 10:2–23Google Scholar
  7. Chandrasekhar K, Bürgi HB (1984) Dynamic processes in crystals examined through difference vibrational parametersΔU: The low-spin-high-spin transition in Tris(dithiocarbamato)iron(III) complexes. Acta Crystallogr B40:387–397Google Scholar
  8. Enraf-Nonius (1983) Structure determination package (SDP). Enraf-Nonius, Delft, The NetherlandsGoogle Scholar
  9. Geiger CA, Brearley A, Amthauer G, Ross CRII (in preparation) Synthesis of almandine garnet and characterization by57Fe Mössbauer and Single crystal FTIR spectroscopy, powder X-ray refinement and transmission electron microscopy: The role of defectsGoogle Scholar
  10. Gol'danskii VI, Makarov EF, Khrapov VV (1963) On the difference in two peaks of Quadrupole splitting in Mössbauer spectra. Phys Lett 3:344–346Google Scholar
  11. Gol'danskii VI (1964) The Mössbauer effect and its applications in chemistry. Van Nostrand, New YorkGoogle Scholar
  12. Gonser K (1975) From a strange effect to Mössbauer spectroscopy. In: Gonser K (ed) Topics in Applied Physics, vol 5, pp 1–51. Mössbauer Spectroscopy. Springer, Berlin Heidelberg NewYorkGoogle Scholar
  13. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy pp 75–76. Chapman and Hall, LondonGoogle Scholar
  14. Herber RH, Chandra S (1970) Gol'danskii-Karyagin effect in Dimethyl Tin Difluoride. J Chem Phys 52:6045–6048Google Scholar
  15. Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing? Acta Crystallogr A 32:239–344Google Scholar
  16. Hummel W, Hauser J, Bürgi HB (1990) PEANUT a computer-graphics program to represent atomic displacement parameters. J Mol Graph 8:214–220Google Scholar
  17. Kunz M, Armbruster Th (1990) Difference displacement parameters in alkali feldspars: Effects of (Si, Al) order-disorder. Amer Mineral 75:141–149Google Scholar
  18. Lyubutin IS, Dodokin AP (1971) Temperature dependence of the Mössbauer effect for Fe2+ in dodecahedral coordination in garnet. Sov Phys Crystallogr 15:1091–1092Google Scholar
  19. Menzer G (1928) Die Kristallstruktur der Granate. Z Kristallogr 69:300–396Google Scholar
  20. Murad E, Wagner FE (1987) The Mössbauer spectrum of almandine. Phys Chem Minerals 14:264–269Google Scholar
  21. Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825Google Scholar
  22. Prandl W (1971) Die magnetische Struktur und die Atomparameter des Almandins Al2Fe3(SiO4)3. Z Kristallogr 134:333–343Google Scholar
  23. Prandl W, Wagner F (1971) Die Orientierung des elektrischen Feld-gradienten und das innere Magnetfeld beim Almandin. Z Kristallogr 134:344–349Google Scholar
  24. Prandl W (1971) Die magnetische Struktur und die Atomparameter des Almandins Al2Fe3(SiO4)3. Z Kristallogr 134:333–343Google Scholar
  25. Seiler P, Schweizer WB, Dunitz JD (1984) Parameter refinement for tetrafluorotherephthalonitrile at 98 K: making the best of a bad job. Acta Crystallogr B40:319–327Google Scholar
  26. Zucker UH, Perenthaler E, Kuhs WF, Bachmann R, Schulz H (1983) PROMETHEUS: A program system for investigation of anharmonic thermal vibrations in crystals. J Appl Crystallogr 16:358Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. A. Geiger
    • 1
  • Th. Armbruster
    • 2
  • G. A. Lager
    • 3
  • K. Jiang
    • 4
  • W. Lottermoser
    • 4
  • G. Amthauer
    • 4
  1. 1.Bayerisches Geoinstitut, Universität BayreuthBayreuthFederal Republic of Germany
  2. 2.Laboratorium für chemische und mineralogische Kristallographie, Universität BernBernSwitzerland
  3. 3.Department of GeologyUniversity of LouisvilleLouisvilleUSA
  4. 4.Institut für Mineralogie, Universität SalzburgSalzburgAustria

Personalised recommendations