Advertisement

Journal of Biomolecular NMR

, Volume 3, Issue 6, pp 715–720 | Cite as

Minimizing the effects of radio-frequency heating in multidimensional NMR experiments

  • Andy C. Wang
  • Ad Bax
Short Communications

Summary

Application of radio-frequency power in multidimensional NMR experiments can significantly increase the sample temperature compared to that of the surrounding gas flow. Radio-frequency heating effects become more severe at higher magnetic field strengths and ionic strengths. The effects are particularly noticeable for experiments that utilize 1H and/or 13C isotropic mixing and broadband decoupling. If radio-frequency power is applied during the systematically increasing evolution period t1, the sample temperature can change with t1 and thereby cause line-shape distortions. Such distortions are easily avoided by ensuring that the average radio-frequency power remains constant during the entire experiment.

Keywords

Radio-frequency heating Line-shape distortion Multidimensional NMR Temperature Decoupling Isotropic mixing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderman D.W. and Grant D.M. (1979) J. Magn. Reson., 36, 447–451.Google Scholar
  2. Bax A. and Davis D.G. (1985) J. Magn. Reson., 65, 355–360.Google Scholar
  3. Bax A., Clore G.M. and Gronenborn A.M. (1990) J. Magn. Reson., 88, 425–431.Google Scholar
  4. Bearden D.W. and Brown L.R. (1989) Chem. Phys. Lett., 163, 432–436.Google Scholar
  5. Bock K., Meyer B. and Vignon M. (1980) J. Magn. Reson., 38, 545–551.Google Scholar
  6. Bodenhausen G. and Ruben D.J. (1980) Chem. Phys. Lett., 69, 185–189.Google Scholar
  7. Braunschweiler L. and Ernst R.R. (1983) J. Magn. Reson., 53, 521–528.Google Scholar
  8. Ernst M., Griesinger C., Ernst R.R. and Bermel W. (1991) Mol. Phys., 74, 219–252.Google Scholar
  9. Fesik S.W., Eaton H.L., Olejniczak E.T., Zuiderweg E.R.P., McIntosh L.P. and Dahlquist F.W. (1990) J. Am. Chem. Soc., 112, 886–888.Google Scholar
  10. Gadian D.G. and Robinson F.N.H. (1979) J. Magn. Reson., 34, 449–455.Google Scholar
  11. Hoult D.I. and Lauterbur P.C. (1979) J. Magn. Reson., 34, 425–433.Google Scholar
  12. Ikura M., Kay L.E., Krinks M. and Bax A. (1991) Biochemistry, 30, 5498–5504.Google Scholar
  13. Led J.J. and Petersen S.B. (1978) J. Magn. Reson., 32, 1–17.Google Scholar
  14. Levitt M.H. and Freeman R. (1981) J. Magn. Reson., 43, 502–507.Google Scholar
  15. Lewis J.S., Tomchuck E. and Bock E. (1988) J. Magn. Reson., 78, 321–326.Google Scholar
  16. Morris G.A. and Gibbs A. (1991) J. Magn. Reson., 91, 444–449.Google Scholar
  17. Piotto M., Saudek V. and Sklenar V. (1992) J. Biomol. NMR, 2, 661–665.Google Scholar
  18. Shaka A.J., Barker P.B. and Freeman R. (1985) J. Magn. Reson., 64, 547–552.Google Scholar
  19. Shaka A.J., Lee C.J. and Pines A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  20. Waugh J.S. (1982) J. Magn. Reson., 50, 30–49.Google Scholar
  21. Zuiderweg E.R.P. (1990) J. Magn. Reson., 89, 533–542.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1993

Authors and Affiliations

  • Andy C. Wang
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations