Skip to main content
Log in

Minimizing the effects of radio-frequency heating in multidimensional NMR experiments

  • Short Communications
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

Application of radio-frequency power in multidimensional NMR experiments can significantly increase the sample temperature compared to that of the surrounding gas flow. Radio-frequency heating effects become more severe at higher magnetic field strengths and ionic strengths. The effects are particularly noticeable for experiments that utilize 1H and/or 13C isotropic mixing and broadband decoupling. If radio-frequency power is applied during the systematically increasing evolution period t1, the sample temperature can change with t1 and thereby cause line-shape distortions. Such distortions are easily avoided by ensuring that the average radio-frequency power remains constant during the entire experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alderman D.W. and Grant D.M. (1979) J. Magn. Reson., 36, 447–451.

    Google Scholar 

  • Bax A. and Davis D.G. (1985) J. Magn. Reson., 65, 355–360.

    Google Scholar 

  • Bax A., Clore G.M. and Gronenborn A.M. (1990) J. Magn. Reson., 88, 425–431.

    Google Scholar 

  • Bearden D.W. and Brown L.R. (1989) Chem. Phys. Lett., 163, 432–436.

    Google Scholar 

  • Bock K., Meyer B. and Vignon M. (1980) J. Magn. Reson., 38, 545–551.

    Google Scholar 

  • Bodenhausen G. and Ruben D.J. (1980) Chem. Phys. Lett., 69, 185–189.

    Google Scholar 

  • Braunschweiler L. and Ernst R.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Ernst M., Griesinger C., Ernst R.R. and Bermel W. (1991) Mol. Phys., 74, 219–252.

    Google Scholar 

  • Fesik S.W., Eaton H.L., Olejniczak E.T., Zuiderweg E.R.P., McIntosh L.P. and Dahlquist F.W. (1990) J. Am. Chem. Soc., 112, 886–888.

    Google Scholar 

  • Gadian D.G. and Robinson F.N.H. (1979) J. Magn. Reson., 34, 449–455.

    Google Scholar 

  • Hoult D.I. and Lauterbur P.C. (1979) J. Magn. Reson., 34, 425–433.

    Google Scholar 

  • Ikura M., Kay L.E., Krinks M. and Bax A. (1991) Biochemistry, 30, 5498–5504.

    Google Scholar 

  • Led J.J. and Petersen S.B. (1978) J. Magn. Reson., 32, 1–17.

    Google Scholar 

  • Levitt M.H. and Freeman R. (1981) J. Magn. Reson., 43, 502–507.

    Google Scholar 

  • Lewis J.S., Tomchuck E. and Bock E. (1988) J. Magn. Reson., 78, 321–326.

    Google Scholar 

  • Morris G.A. and Gibbs A. (1991) J. Magn. Reson., 91, 444–449.

    Google Scholar 

  • Piotto M., Saudek V. and Sklenar V. (1992) J. Biomol. NMR, 2, 661–665.

    Google Scholar 

  • Shaka A.J., Barker P.B. and Freeman R. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • Shaka A.J., Lee C.J. and Pines A. (1988) J. Magn. Reson., 77, 274–293.

    Google Scholar 

  • Waugh J.S. (1982) J. Magn. Reson., 50, 30–49.

    Google Scholar 

  • Zuiderweg E.R.P. (1990) J. Magn. Reson., 89, 533–542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A.C., Bax, A. Minimizing the effects of radio-frequency heating in multidimensional NMR experiments. J Biomol NMR 3, 715–720 (1993). https://doi.org/10.1007/BF00198374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198374

Keywords

Navigation