Effects of sediment organic carbon on distribution of radiolabeled fluoranthene and PCBs among sediment, interstitial water, and biota

  • J. M. Brannon
  • C. B. Price
  • F. J. ReillyJr.
  • J. C. Pennington
  • V. A. McFarland
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association (1985) Standard methods for the examination of water and wastewater, 16th ed. American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington, DC 1286pGoogle Scholar
  2. Beckman Instruments (1974) Instructions 0150081553-F for LS-100-C. Scientific Instruments Division, Beckman Instruments, Inc., Irvine, California.Google Scholar
  3. Bierman VJ Jr. (1990) Equilibrium partitioning and biomagnification of organic chemicals in benthic animals. Environ Sci Technol 24:1407–1412Google Scholar
  4. Clarke JU, McFarland VA, Dorkin J (1988) Evaluating bioavailability of neutral organic chemicals in sediments — a confined disposal facility case study. In: Willey RG (ed), Proceedings of the Seminar: Water Quality 88, Hydrologic Engineering Research Center, Davis, California, pp 251–268Google Scholar
  5. Ferraro SP, Lee H II, Ozretich RJ, Specht, DT (1990) Predicting bioaccumulation potential: a test of a fugacity-based model. Arch Environ Contam Toxicol 19:386–394Google Scholar
  6. Ferraro SP, Lee H II, Smith LM, Ozretich RJ, Specht, DT (1991) Accumulation factors for eleven polychlorinated biphenyl congeners. Bull Environ Contam Toxicol 46:276–283Google Scholar
  7. Gauthier TD, Seitz WR, Grant CL (1987) Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ Sci Technol 21:243–248Google Scholar
  8. Grathwohl P (1990) Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: implications on oc correlations. Environ Sci Technol 24:1687–1693Google Scholar
  9. Hawker DW Connell DW (1988) Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ Sci Technol 22:382–387Google Scholar
  10. Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10:833–846Google Scholar
  11. Landrum PF, Nihart SR, Eadie BJ, Gardner WS (1984) Reverse phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters, Environ Sci Technol 18:187–192Google Scholar
  12. Lee H, II (1992) Models, muddles, and mud: predicting bioacccumulation of sediment-associated pollutants. In: Burton GA Jr. (ed.), Sediment Toxicity Assessment, Lewis Publishers, Ann Arbor, MichiganGoogle Scholar
  13. McElroy AE Means JC (1988) Factors affecting the bioavailability of hexachlorobi-phenyls to benthic organisms. In: Adams WJ, Chapman GA, Landis WG, (eds.) Aquatic Toxicology and Hazard Assessment: 10th Volume, ASTM STP 971, American Society for Testing and Materials, Philadelphia, pp 149–158Google Scholar
  14. McFarland VA (1984) Activity-based evaluation of potential bioaccumulation from sediments. Dredging '84 Proceedings, American Society of Civil Engineers, 345 East 47th Street, New York, 1:461–467Google Scholar
  15. McFarland VA Clarke JU (1986) Testing bioavailability of polychlorinated biphenyls from sediments using a two-level approach. In: Willey RG (ed.). USAE Committee on Water Quality, 6th Seminar-Proceedings, Hydrologic Engineering Research Center, Davis, California p 220–229Google Scholar
  16. McFarland VA, Lutz CH, Reilly FJ (1989) Factors influencing bioaccumulation of sediment-associated contaminants by aquatic organisms; factors related to sediment and water. Environmental Effects of Dredging Technical Note EEDP-01 -18, US Army Engineer Waterways Experiment Station, Vicksburg, MississippiGoogle Scholar
  17. Rubinstein NI, Lake JL, Pruell RJ, Lee H II, Taplin BK, Heltshe J, Bowen R, Pavignano S (1987) Predicting bioaccumulation of sediment-associated organic contaminants: development of a regulatory tool for dredged material evaluation, US Environmental Protection Agency, Environmental Research Laboratory Report EPA 600/X-87/368. Narragansett, Rhode IslandGoogle Scholar
  18. Rubinstein NI, Pruell RJ, Taplin BK, LiVolsi JA (1990) Bioavailability of 2,3,7,8- TCDD, 2,3,7,8-TCDF and PCBs to marine benthos from Passaic River sediments. Chemosphere 20:1079–1102PubMedGoogle Scholar
  19. Steinberg SM, Pignatello JJ, and Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21:1201–1208Google Scholar
  20. Tetra Tech (1985) Bioaccumulation monitoring guidance: 1. Estimating the Potential for Bioaccumulation of Priority Pollutants and 301(h) Pesticides Discharged into Marine and Estuarine Waters. Final Report Prepared by Tetra Tech, Inc., for the U.S. Environmental Protection Agency Under Contract No. 69-01-6938Google Scholar
  21. Young DA, Mearns AJ, Gossett RW (1991) Bioaccumulation of p,p'-DDE and PCB 1254 by a flatfish bioindicator from highly contaminated marine sediment of Southern California. In: Proceedings of the Symposium on Organic Substances and Sediments in Water: Biological Processes, American Chemical Society, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • J. M. Brannon
    • 1
  • C. B. Price
    • 1
  • F. J. ReillyJr.
    • 2
  • J. C. Pennington
    • 1
  • V. A. McFarland
    • 1
  1. 1.U.S. Army Engineer Waterways Experiment StationVicksburgUSA
  2. 2.AScl CorporationVicksburgUSA

Personalised recommendations