Advertisement

Planta

, Volume 184, Issue 4, pp 515–524 | Cite as

Photomovement in Dunaliella salina: Fluence rate-response curves and action spectra

  • Randy Wayne
  • Akeo Kadota
  • Masakatsu Watanabe
  • Masaki Furuya
Article

Abstract

We determined the action spectra of the photophobic responses as well as the phototactic response in Dunaliella salina (Volvocales) using both single cells and populations. The action spectra of the photophobic responses have maxima at 510 nm, the spectrum for phototaxis has a maximum at 450–460 nm. These action spectra are not compatible with the hypothesis that flavoproteins are the photoreceptor pigments, and we suggest that carotenoproteins or rhodopsins act as the photoreceptor pigments. We also conclude that the phototactic response in Dunaliella is an elementary response, quite independent of the step-up and step-down photophobic responses. We also determined the action spectra of the photoaccumulation response in populations of cells adapted to two different salt conditions. Both action spectra have a peak a 490 nm. The photoaccumulation response may be a complex response composed of the phototactic and photophobic responses. Blue or blue-green light does not elicit a photokinetic response in Dunaliella.

Key words

Action spectra (DunaliellaBlue and blue-green light responses Dunaliella Light-induced motile responses Photophobic responses Phototaxis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barghigiani, C., Colombetti, G., Franchini, B., Lenci, F. (1979) Photobehavior of Euglena gracilis: action spectrum for the step-down photophobic response of individual cells. Photochem. Photobiol. 29, 1015–1019Google Scholar
  2. Benedetti, P.A., Lenci, F. (1977) “In vivo” microspectrofluorometry of photoreceptor pigments in Euglena gracilis. Photochem. Photobiol. 26, 315–318Google Scholar
  3. Binder, B.J., Anderson, D.M. (1986) Green light-mediated photomorphogenesis in a dinoflagellate resting cyst. Nature 322, 659–661Google Scholar
  4. Buder, J. (1917) Zur Kenntnis der phototaktischen Richtungsbewegungen. Jahrb. Wiss. Bot. 58, 105–220Google Scholar
  5. Colombetti, G., Petracchi, D. (1989) Photoresponse mechanisms in flagellated algae. Crit. Rev. Plant Sci. 8, 309–355Google Scholar
  6. Diehn, B. (1980) Experimental determination and measurement of photoresponses. In: Photoreception and sensory transduction in aneural organisms, pp. 107–125, Lenci, F., Colombetti, G., eds. Plenum Press, New YorkGoogle Scholar
  7. Diehn, B., Kint, B. (1970) The flavin nature of the photoreceptor pigments for phototaxis in Euglena. Physiol. Chem. Phys. 2, 483–488Google Scholar
  8. Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E., Lenci, F., Nultsch, W. (1975) Terminology of behavioral responses of motile organisms. Photochem. Photobiol. 26, 554–560Google Scholar
  9. Feinleib, M.E.H., Curry, G.M. (1967) Methods for measuring phototaxis of cell populations and individual cells. Physiol. Plant. 20, 1083–1095Google Scholar
  10. Forward, R.B. (1974) Phototaxis by the dinoflagellate Gymnodinium splendens Lebour. J. Protozool. 21, 312–315Google Scholar
  11. Foster, K.W., Smyth, R.D. (1980) Light antennas in phototactic algae. Microbiol. Rev. 44, 572–630Google Scholar
  12. Foster, K.W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., Nakanishi, K. (1984) Rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311, 756–759Google Scholar
  13. Foster, K.W., Saranak, J., Zarilli, G. (1988) Autoregulation of rhodopsin synthesis in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 85, 6379–6383Google Scholar
  14. Galland, P. (1987) Action spectroscopy. In: Blue light responses: phenomena and occurrence in plants and microorganisms, pp. 37–52, Senger, H., ed. CRC Press, Boca Raton, Fla., USAGoogle Scholar
  15. Häder, D.-P. (1988) Ecological consequences of photomovement in microorganisms. J. Photochem. Photobiol. B: Biol. 1, 385–414Google Scholar
  16. Halldal, P. (1958) Action spectra of phototaxis and related problems in volvocales, ulva-gametes and dinophyceae. Physiol. Plant. 11, 118–153Google Scholar
  17. Haupt, W. (1982) Light-mediated movement of chloroplasts. Annu. Rev. Plant Physiol. 33, 205–233Google Scholar
  18. Kawai, H. (1988) A flavin-like autofluorescent substance in the posterior flagellum of golden and brown algae. J. Phycol. 24, 114–117Google Scholar
  19. Kirk, M.M., Kirk, D.L. (1985) Translational regulation of protein synthesis, in response to light, at a critical stage of Volvox development. Cell 41, 419–428Google Scholar
  20. Kondo, T., Kubota, M., Aono, Y., Watanabe, M. (1988) A computerized video system to automatically analyze movements of individual cells and its application to the study of circadian rhythms in phototaxis and motility in Chlamydomonas. Protoplasma Suppl. 1, 185–192Google Scholar
  21. Loeblich, A.R., III (1975) A seawater medium for dinoflagellates and the nutrition of Cachonina niei. J. Phycol. 11, 80–86Google Scholar
  22. Matsui, S., Retzik, M., Variano, B. (1989) An FT, visible microscope, photodiode array spectrometer. American Laboratory 21 (8), 28–35Google Scholar
  23. Mikolajczyk, E., Diehn, B. (1975) The effect of potassium iodide on photophobic responses in Euglena: evidence for two photoreceptor pigments. Photochem. Photobiol. 22, 268–271Google Scholar
  24. Noe, K., Wayne, R. 1990. The phototactic response of Dunaliella requires nanomolar concentrations of external calcium. Plant Physiol. 93, S-90Google Scholar
  25. Nultsch, W. (1980) Effects of blue light on movement of microorganisms. In: The blue light syndrome, pp. 38–49, Senger, H., ed. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  26. Schletz, K. (1976) Phototaxis bei Volvox — Pigmentsysteme der Lichtrichtungsperzeption. Z. Pflanzenphysiol. 77, 189–211Google Scholar
  27. Schilde, C. (1968) Schnelle photoelektrische Effekte der Alge Acetabularia. Z. Naturforsch. 23b, 1369–1376Google Scholar
  28. Senger, H., Lipson, E.D. (1987) Problems and prospects of blue and ultraviolet light effects. In: Phytochrome and photoregulation in plants, pp. 315–331. Academic Press, Tokyo Orlando etc.Google Scholar
  29. Virgin, H.I. (1951) The effect of light on the protoplasmic viscosity. Physiol. Plant. 4, 255–357Google Scholar
  30. Watanabe, M., Furuya, M., Miyoshi, Y., Inoue, Y., Iwahashi, I., Matsumoto, K. (1982) Design and performance of the Okazaki large spectrograph for photobiological research. Photochem. Photobiol. 36, 491–498Google Scholar
  31. Zurzycki, J. (1980) Blue light-induced intracellular movements. In: The blue light syndrome, pp. 50–68, Senger, H., ed. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Randy Wayne
    • 1
  • Akeo Kadota
    • 2
  • Masakatsu Watanabe
    • 3
  • Masaki Furuya
    • 4
  1. 1.Section of Plant BiologyCornell UniversityIthacaUSA
  2. 2.Department of BiologyTokyo Metropolitan UniversityTokyoJapan
  3. 3.Okazaki Large SpectrographNational Institute for Basic BiologyAichiJapan
  4. 4.Frontier Research ProgramRIKEN, Institute of Physical and Chemical ResearchSaitamaJapan

Personalised recommendations