Advertisement

Journal of Biomolecular NMR

, Volume 6, Issue 3, pp 335–339 | Cite as

Spin-locked multiple quantum coherence for signal enhancement in heteronuclear multidimensional NMR experiments

  • Stephan Grzesiek
  • Ad Bax
Short Communication

Summary

For methine sites the relaxation rate of 13C-1H two-spin coherence is generally slower than the relaxation rate of the individual 13C and 1H single spin coherences. The slower decay of two-spin coherence can be used to increase the sensitivity and resolution in heteronuclear experiments, particularly those that require correlation of Hα and Cα chemical shifts. To avoid dephasing of the two-spin coherence caused by 1H-1H J-couplings, the 1H spin is locked by the application of a weak rf field, resulting in a spin-locked multiple quantum coherence. For a sample of calcium-free calmodulin, use of the multiple quantum approach yields significant signal enhancement over the conventional constant-time 2D HSQC experiment. The approach is applicable to many multidimensional NMR experiments, as demonstrated for a 3D 13C-separated ROESY CT-HMQC spectrum.

Key words

Multidimensional NMR Line narrowing Relaxation Multiple quantum coherence ROESY Protein Calmodulin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allerhand A. (1966) J. Chem. Phys., 44 1–9.Google Scholar
  2. Bax A. and Davis D.G. (1985) J. Magn. Reson., 63, 207–213.Google Scholar
  3. Bax A., Kay L.E., Sparks S.W. and Torchia D.A. (1989) J. Am. Chem. Soc., 111, 408–409.Google Scholar
  4. Bax A., Ikura M., Kay L.E., Torchia D.A. and Tschudin R. (1990) J. Magn. Reson., 86, 304–318.Google Scholar
  5. Billeter M., Neri D., Otting G., Quian Y.Q. and Wüthrich K. (1992) J. Biomol. NMR, 2, 257–274.Google Scholar
  6. Clore G.M., Bax A. and Gronenborn A.M. (1991) J. Biomol. NMR, 1, 13–22.Google Scholar
  7. Goldman M., Quantum Description of high resolution NMR in Liquids, Clarendon Press, Oxford, 1988, pp. 248–254.Google Scholar
  8. Griffey R.H. and Redfield A.G. (1987) Quart. Rev. Biophys., 19, 51–82.Google Scholar
  9. Grzesiek S., Kuboniwa H., Hinck A. and Bax A. (1995) J. Am. Chem. Soc., 117, 5312–5315.Google Scholar
  10. Kay L.E., Marion D. and Bax A. (1989) J. Magn. Reson., 84, 72–84.Google Scholar
  11. Kuboniwa H., Grzesiek S., Delaglio F. and Bax A. (1994) J. Biomol. NMR, 4, 871–878.Google Scholar
  12. Parkin S., Rupp B. and Hope H. (1995) entry 1BPI of the Brookhaven Protein Databank, Brookhaven National Laboratory, Upton, NY.Google Scholar
  13. Santoro J. and King G.C. (1992) J. Magn. Reson., 97, 202–207.Google Scholar
  14. Seip S., Balbach J. and Kessler H. (1992) J. Magn. Reson., 100, 406–410.Google Scholar
  15. Shaka A.J., Keeler J., Frenkiel T. and Freeman R. (1983) J. Magn. Reson., 52, 335–338.Google Scholar
  16. Shaka A.J., Lee C.J. and Pines A. (1988) J. Magn. Reson. 77, 274–293.Google Scholar
  17. Tjandra N., Kuboniwa H., Ren H., and Bax A. (1995) Eur. J. Biochem., 230, 1014–1024.Google Scholar
  18. Van deVen F.J.M. and Philippens M.E.P. (1992) J. Magn. Reson., 97, 637–644.Google Scholar
  19. Vuister G.W. and Bax A. (1992) J. Magn. Reson., 98, 428–435.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1995

Authors and Affiliations

  • Stephan Grzesiek
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations