, Volume 183, Issue 2, pp 258–264 | Cite as

Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex

  • Jan Van Parijs
  • Willem F. Broekaert
  • Irwin J. Goldstein
  • Willy J. Peumans


Several chitin-binding proteins were isolated from the “bottom fraction” of Hevea brasiliensis (Müll.) Arg. latex. One of these chitin-binding proteins is hevein, a small monomeric protein which strongly resembles the lectin from stinging nettle (Urtica dioica L.). Like the latter, hevein showed strong antifungal activity against several fungi in vitro. The possible involvement of this protein in the defense against invasion by potentially pathogenic fungi is discussed.

Key words

Chitin Fungus Hevea (antifungal protein) Lectin Plant-pathogen interaction Resistance (to fungi) 



fast protein liquid chromatography


apparent molecular mass


Sodium dodecyl sulp-hatepolyacrylamide gel electrophoresis


Urtica dioica agglutinin


Wheat-germ agglutinin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansari, A.A., Mage, R.G. (1976) An evaluation of effectiveness of bio glass in molecular sieving of polypeptides in guanidine hydrochloride. Anal. Biochem. 74, 118–125Google Scholar
  2. Archer, B.L. (1960) The proteins of Hevea brasiliensis latex. 4. Isolation and characterization of crystalline hevein. Biochem. J. 75, 236–240Google Scholar
  3. Archer, B.L., Audley, B.G., Sweeney, G.P., Tan, Chee Hong (1969) Studies on composition of latex serum and ‘bottom fraction’ particles. J. Rubber Res. Inst. Malays. 21, 560–569Google Scholar
  4. Boller, T. (1988) Ethylene and the regulation of antifungal hydrolases in plants. In: Oxford surveys of plant molecular and cell biology, vol. 5, pp. 145–174, Miflin, B.J., ed. Oxford University Press, OxfordGoogle Scholar
  5. Boller, T., Kende, H. (1979) Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 63, 1123–1132Google Scholar
  6. Broekaert, W.F. (1988) Chitinases and chitin-binding lectins in plants: a biochemical and physiological study of their role in the natural protection of plants against fungi. Dissertationes de agricultura 165, Fakulteit Landbouw-wetenschappen, K.U. LeuvenGoogle Scholar
  7. Broekaert, W.F., Van Parijs, J., Allen, A.K., Peumans, W.J. (1988) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol. Mol. Plant Pathol. 33, 319–331Google Scholar
  8. Broekaert, W.F., Van Parijs, J., Leyns, F., Joos, H., Peumans, W.J. (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245, 1100–1102Google Scholar
  9. Cabib, E. (1987) The synthesis and degradation of chitin. Adv. Enzymol. 59, 59–101Google Scholar
  10. Chapot, M.P., Peumans, W.J., Strosberg, A.D. (1986) Extensive homologies between lectins from non-leguminous plants. FEBS Lett. 195, 231–234Google Scholar
  11. Jollés, P. (1962) Lysosomes from rabbit spleen and dog spleen. In: Methods in enzymology, vol. V, pp. 137–140, Colowick, S.P., Kaplan, N.O., eds. Academic Press, New York LondonGoogle Scholar
  12. Kocourek, J., Horejsi, V. (1981) Defining a lectin. Nature 290, 188Google Scholar
  13. Koop, D.R., Morgan, E.T., Tarr, G.E., Coon, M.U. (1982) Purification and characterization of a unique isozyme of cytochrome from liver microsomes of ethanol-treated rabbits. J. Biol. Chem. 257, 8472–8480Google Scholar
  14. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685Google Scholar
  15. Mauch, F., Staehelin, L.A. (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1, 447–457CrossRefPubMedGoogle Scholar
  16. Mauch, F., Mauch-Mani, B., Boller, T. (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88, 936–942Google Scholar
  17. Mirelman, D., Galun, E., Sharon, N., Lotan, R. (1975) Inhibition of fungal growth by wheat germ agglutinin. Nature 256, 414–416Google Scholar
  18. Peumans, W.J., Stinissen, H.M., Carlier, A.R. (1982) Isolation and partial characterization of wheat-germ-agglutinin-like lectins from rye (Secale reale) and barley (Hordeum vulgare) embryos. Biochem J. 203, 239–243Google Scholar
  19. Peumans, W.J., De Ley, M., Broekaert, W.F. (1983) An unusual lectin from stinging nettle (Urtica dioica) rhizomes. FEBS Lett. 177, 99–103Google Scholar
  20. Price, J.S., Storck, R. (1975) Production, purification and characterization of an extracellular chitosanase from Streptomyces. J. Bacteriol. 124, 1574–1585Google Scholar
  21. Rupley, J.A. (1964) The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrates for lysozyme. Biochim. Biophys. Acta 29, 522–534Google Scholar
  22. Schlumbaum, A., Mauch, F., Voegeli, V., Boller, T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324, 365–367Google Scholar
  23. Tata, S.J. (1975) Hevein: its isolation, purification and some structural aspects. In: Proc. Int. Rubber Conference, Kuala Lumpur, vol II, pp. 499–517, Rubber Res. Inst. Malaysia, Kuala LumpurGoogle Scholar
  24. Tata, S.J., Beintema, J.J., Balabaskaran, S. (1983) The lysozyme of Hevea brasiliensis latex: isolation, purification, enzyme kinetics and a partial amino acid sequence. J. Rubber Res. Inst. Malays. 31, 35–42Google Scholar
  25. Walsh, K.A. (1970) Trypsinogens and trypsins of various species. In: Methods of enzymology, vol XIV, pp. 41–63, Perlmann, G.E., Lorand, L., eds. Academic Press, New York, LondonGoogle Scholar
  26. Walujono, K., Scholma, R.A., Beintema, J.J., Mariono, A., Hahn, A.M. (1975) Amino acid sequence of hevein. In: Proc. Int. Rubber Conference, Kuala Lumpur, vol II, pp. 518–531, Rubber Res. Inst. Malaysia, Kuala LumpurGoogle Scholar
  27. Wessels, J.G.H. (1988) A steady-state model for apical wall growth in fungi. Acta Bot. Neerl. 37, 3–16Google Scholar
  28. Wright, H.T., Brooks, D.M., Wright, C.S. (1985) Evolution of the multidomain protein wheat germ agglutinin. J. Mol. Evol. 21, 133–138Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jan Van Parijs
    • 1
  • Willem F. Broekaert
    • 1
  • Irwin J. Goldstein
    • 2
  • Willy J. Peumans
    • 1
  1. 1.Laboratorium voor PlantenbiochemieLeuvenBelgium
  2. 2.Department of Biological ChemistryUniversity of MichiganAnn HarborUSA

Personalised recommendations