, Volume 188, Issue 4, pp 513–521 | Cite as

Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt

  • Georg Kreimer
  • Claudia Overländer
  • Oleg A. Sineshchekov
  • Heike Stolzis
  • Wilhelm Nultsch
  • Michael Melkonian


The function of the eyespot in phototaxis of the flagellate green alga Chlamydomonas reinhardtii Dangeard was studied using quantitative reflection confocal laser scanning microscopy and photoelectric measurements. The reflective properties of the eyespot and the photoreceptor current of the C. reinhardtii eyespot mutant ey 627, mt were compared with those of Chlamydomonas strains possessing a well-developed eyespot. Under growth conditions in which strongly disorganized eyespots were observed in the mutant by electron microscopy, there was a significant reduction in the reflection intensity of the eyespot and in the amplitude ratio (500∶440 nm) of photoreceptor currents induced by flashes of 500- and 440-nm light in non-oriented cells. Photoelectrical responses of pre-oriented cells revealed that the latter effect is caused by an altered directional sensitivity of the antenna complex, whereas the functional state of the photoreceptor pigment is not strongly affected in mutant cells. Both the reflection intensity and the amplitude ratio of photoreceptor currents increased to the level of reference strains under conditions supporting the development of a well-organized eyespot in the mutant. Furthermore, incubation of the mutant with high concentrations of all-trans-retinal (10 μM), independent of whether carotenoid biosynthesis was inhibited or not, was found to increase the reflection intensity of the eyespot. An increase in the rate of photoorientation of the mutant occurred concomitant with the increase in the reflective properties of the mutant eyespot. These observations demonstrate the importance of an intact eyespot for interference reflection and absorption of phototactically active light, and thus for the directional sensitivity of the eyespot apparatus.

Key words

Chlamydomonas Confocal laser scanning microscopy Eyespot Photoreceptor potential Phototaxis Retinal 



high-salt medium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckmann, M., Hegemann, P. (1991) In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry 30, 3692–3697Google Scholar
  2. Boscov, J.S., Feinleib, M.E. (1979) Phototactic response of Chlamydomonas to flashes of light. II. Response of individual cells. Photochem. Photobiol. 30, 499–505Google Scholar
  3. Buder, J. (1917) Zur Kenntnis der phototaktischen Richtungsbewegung. Jahrb. Wiss. Bot. 58, 105–220Google Scholar
  4. Derguini, F., Mazur, P., Nakanishi, K., Starace, D.M., Saranak, J., Foster, K.W. (1991) All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii. Photochem Photobiol. 54, 1017–1021Google Scholar
  5. Foster, K.W., Smyth, R.D. (1980) Light antennas in phototactic algae. Microbiol. Rev. 44, 572–630Google Scholar
  6. Foster, K.W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., Nakanishi, K. (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311, 756–759Google Scholar
  7. Foster, K.W., Saranak, J., Zarrilli, G. (1988) Autoregulation of rhodopsin synthesis in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 85, 6379–6383Google Scholar
  8. Harz, H., Hegemann, P. (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351, 489–491Google Scholar
  9. Hader, D.-P. (1979) Photomovement. In: Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 268–309, Haupt, W., Feinleib, M.E., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Hegemann, P., Hegemann, U., Foster, K.W. (1988) Reversible bleaching of Chlamydomonas reinhardtii rhodopsin in vivo. Photochem. Photobiol. 48, 123–128Google Scholar
  11. Hegemann, P., Gärtner, W., Uhl, R. (1991) All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys. J. 60, 1477–1489Google Scholar
  12. Kreimer, G., Melkonian, M. (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur. J. Cell Biol. 53, 101–111Google Scholar
  13. Kreimer, G., Brohsonn, U., Melkonian, M. (1991a) Isolation and partial characterization of the photoreceptive organelle for phototaxis of a flagellate green alga. Eur. J. Cell Biol. 55, 318–327Google Scholar
  14. Kreimer, G., Kawai, H., Müller, D.G., Melkonian, M. (1991b) Reflective properties of the stigma in male gametes of Ectocarpus siliculosus (Phaeophyceae) studied by confocal laser scanning microscopy. J. Phycol. 27, 268–276Google Scholar
  15. Kreimer, G., Marner, F.-J., Brohsonn, U., Melkonian, M. (1991c) Identification of 11-cis and all-trans-retinal in the photoreceptive organelle of a flagellate green alga. FEBS-Lett. 293, 49–52Google Scholar
  16. Lien, T., Knutsen, G. (1976) Synchronized cultures of a cell wallless mutant of Chlamydomonas reinhardtii. Arch. Microbiol. 108, 189–194Google Scholar
  17. Lien, T., Knutsen, G. (1979) Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): a review of optimal conditions. J. Phycol. 15, 191–200Google Scholar
  18. Litvin, F.F., Sineshchekov, O.A., Sineshchekov, V.A. (1978) Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature 271, 476–478Google Scholar
  19. Mast, S.O. (1927) Structure and function of the eye-spot in unicellular and colonial organisms. Arch. Protistenkd. 60, 197–220Google Scholar
  20. McFadden, G.I., Melkonian, M. (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25, 551–557Google Scholar
  21. Melkonian, M. (1975) The fine structure of zoospores of Fritschiella tuberosa lyeng (Chaetophorineae, Chlorophyceae) with special reference to the flagellar apparatus. Protoplasma 86, 391–404Google Scholar
  22. Melkonian, M. (1982) Effects of divalent cations on flagellar scales in the green flagellate Tetraselmis cordiformis. Protoplasma 111, 221–233Google Scholar
  23. Melkonian, M., Robenek, H. (1980) Eyespot membranes of Chlamydomonas reinhardtii: a freeze-fracture study. J. Ultrastruct. Res. 72, 90–102Google Scholar
  24. Melkonian, M., Robenek, H. (1984) The eyespot apparatus of flagellated green algae: a critical review. Prog. Phycol. Res. 3, 193–268Google Scholar
  25. Morel-Laurens, N.M.L., Bird, D.J. (1984) Effects of cell division on the stigma of wild-type and an “eyeless” mutant of Chlamydomonas. J. Ultrastruc. Res. 87, 46–61Google Scholar
  26. Morel-Laurens, N.M.L., Feinleib, M.E. (1983) Photomovement in an “eyeless” mutant of Chlamydomonas. Photochem. Photobiol. 37, 189–194Google Scholar
  27. Nultsch, W., Hader, D.-P. (1988) Photomovement in motile microorganisms-II. Photochem. Photobiol. 47, 837–869Google Scholar
  28. Nultsch, W., Throm, G., von Rimscha, I. (1971) Phototaktische Untersuchungen an Chlamydomonas reinhardtii Dangeard in homokontinuierlicher Kultur. Arch. Mikrobiol. 80, 351–369Google Scholar
  29. Pringsheim, E.G. (1963) Farblose Algen. Gustav Fischer Verlag, StuttgartGoogle Scholar
  30. Reize, I.B., Melkonian, M. (1989) A new way to investigate living flagellated/ciliated cells in the light microscope: immobilization of cells in agarose. Bot. Acta 102, 145–151Google Scholar
  31. Rüffer, U., Nultsch, W. (1991) Flagellar photoresponses of Chlamydomonas cells held on micropipettes: IL Change in flagellar beat pattern. Cell Motil. Cytoskeleton 18, 269–278Google Scholar
  32. Sineshchekov, O.A. (1991a) Photoreception in unicellular flagellates: bioelectric phenomena in phototaxis. In: Light in biology and medicine, Proceedings of the III Conference of the European Society for Photobiology Budapest 1989, vol. 2, pp. 523–532, Douglas, R.H., Moan, J., Ronto, G., eds. Plenum Press, New YorkGoogle Scholar
  33. Sineshchekov, O.A. (1991b) Electrophysiology of photomovements in flagellated algae. In: Biophysics of photoreceptors and photomovements, pp. 191–202, Lenci, F. ed. Plenum Press, New YorkGoogle Scholar
  34. Sineshchekov, O.A., Govorunova, E.G., Litvin, F.F. (1989) Role of photosynthetic apparatus and stigma in the formation of spectral sensitivity of phototaxis in flagellated green algae. In Russ. Eng. abstr. Biofizika 34, 255–258Google Scholar
  35. Sineshchekov, O.A., Litvin, F.F., Keszthelyi, L. (1990) Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. Biophys. J. 57, 33–39Google Scholar
  36. Sineshchekov, O.A., Govorunova, E.G., Der, A., Keszthelyi, L., Nultsch, W. (1992) Photoelectric responses in phototactic flagellated algae measured in cell suspensions. J. Photochem. Photobiol. 13, 119–134Google Scholar
  37. Sueoka, N., Chiang, K.S., Kates, J.R. (1967) Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardtii. I. Isotopic transfer experiments with a strain producing eight zoospores. J. Mol. Biol. 25, 47–66Google Scholar
  38. Surzycki, S. (1971) Synchronous grown cultures of Chlamydomonas reinhardtii. Methods Enzymol. 23, 67–73Google Scholar
  39. Takahashi, T., Yoshihara, K., Watanabe, M., Kubota, M., Johnson, R., Derguini, F., Nakanishi, K. (1991) Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic responses. Biochem. Biophys. Res. Commun. 178, 1273–1279Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Georg Kreimer
    • 1
  • Claudia Overländer
    • 1
  • Oleg A. Sineshchekov
    • 2
  • Heike Stolzis
    • 1
  • Wilhelm Nultsch
    • 2
  • Michael Melkonian
    • 1
  1. 1.Botanisches InstitutUniversität zu KölnKöln 41FRG
  2. 2.Lahnberge, Fachbereich Biologie/BotanikUniversität MarburgMarburgFRG

Personalised recommendations