Physics and Chemistry of Minerals

, Volume 16, Issue 5, pp 415–420 | Cite as

Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K

  • Nancy L. Ross
  • Robert M. Hazen
Article

Abstract

Single crystal X-ray diffraction study of MgSiO3 perovskite has been completed from 77 to 400 K. The thermal expansion coefficient between 298 and 381 K is 2.2(8) × 10-5 K-1. Above 400 K, the single crystal becomes so multiply twinned that the cell parameters can no longer be determined.

From 77 to 298 K, MgSiO3 perovskite has an average thermal expansion coefficient of 1.45(9) × 10-5 K-1, which is consistent with theoretical models and perovskite systematics. The thermal expansion is anisotropic; the a axis shows the most expansion in this temperature range (αa = 8.4(9) × 10-6 K-1) followed by c(αc = 5.9(5) × 10-6 K-1) and then by b, which shows no significant change in this temperature range. In addition, the distortion (i.e., the tilting of the [SiO6] octahedra) decreases with increasing temperature. We conclude that the behavior of MgSiO3 perovskite with temperature mirrors its behavior under compression.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen RE (1987) Elasticity and equation of state of MgSiO3 perovskite. Geophys Res Lett 14:1053–1056Google Scholar
  2. Cohen RE, Boyer LL, Mehl M, Pickett WE (1989) Electronic structure and total energy calculations for oxide perovskites and superconductors. In: Navrotsky A and Weidner DJ (eds) Perovskite-A Structure of Great Interest to Geophysics and Materials Science. Am Geophys Union, Washington, DC (in press)Google Scholar
  3. Coutures J, Coutures JP (1984) Etude par rayons X à haute temperature des transformations polymorphiques des perovskites LnAlO3 (Ln = élément lanthanidique). J Solid State Chem 52:95–100Google Scholar
  4. Finger LW, Hadidiacos CG, Ohashi Y (1973) A computer-automated, single-crystal, X-ray diffractometer. Carnegie Inst Washington Yearb 72:694–699Google Scholar
  5. Geller S (1957) Crystallographic studies of perovskite-like compounds.IV. Rare earth scandates, vanadites, gallates, orthochromites. Acta Crystallogr 10:243–248Google Scholar
  6. Glazer AM, Mabud SA (1978) Powder profile refinement of lead zirconate titanate at several temperatures.II. Pure PbTiO3. Acta Crystallogr B34:1065–1070Google Scholar
  7. Hazen RM (1977) Temperature, pressure and composition: Structurally analogous variables. Phys Chem Minerals 1:83–94Google Scholar
  8. Hazen RM, Finger LW (1981) Calcium fluoride as an internal pressure standard in high-pressure/high-temperature crystallography. J Appl Crystallogr 14:234–236Google Scholar
  9. Hazen RM, Finger LW (1982) Comparative Crystal Chemistry. John Wiley & Sons Ltd, New York, 5–16Google Scholar
  10. Hemley RJ, Jackson MD, Gordon RG (1987) Theoretical study of the structure, lattice dynamics, and equations of state of perovskite-type MgSiO3 and CaSiO3. Phys Chem Minerals 14:2–12Google Scholar
  11. Hemley RJ, Cohen RE, Yeganeh-Haeri A, Mao HK, Weidner DJ, Ito E (1989) Raman spectroscopy and lattice dynamics of MgSiO3 perovskite at high pressure. In: Navrotsky A and Weidner DJ (eds) Perovskite — A Structure of Great Interest to Geophysics and Materials Science. Am Geophys Union, Washington, DC (in press)Google Scholar
  12. Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: Single crystal X-ray diffraction study. Am Mineral 72:357–360Google Scholar
  13. International Tables for X-ray Crystallography (1974) Kynoch Press, BirminghamGoogle Scholar
  14. Ito E, Matsui Y (1978) Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet Sci Lett 38:443–450Google Scholar
  15. Ito E, Weidner DJ (1986) Crystal growth of MgSiO3 perovskite. Geophys Res Lett 13:464–466Google Scholar
  16. Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates. Rev Geophys Space Phys 17:35–58Google Scholar
  17. King HE, Finger LW (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. J Appl Crystallogr 12:374–378Google Scholar
  18. Knittle E, Jeanloz R, Smith GL (1986) Thermal expansion of silicate perovskite and stratification of the Earth's mantle. Nature 319:214–216Google Scholar
  19. Kudoh Y, Ito E, Takeda H (1987) Effect of pressure on the crystal structure of perovskite-type MgSiO3. Phys Chem Minerals 14:350–354Google Scholar
  20. Liu L (1976) Orthorhombic perovskite phases observed in olivine, pyroxene and garnet at high pressures and temperatures. Phys Earth Planet Inter 11:289–298Google Scholar
  21. Liu X, Wang Y, Liebermann RC (1988) Orthorhombic-tetragonal phase transition in CaGeO3 perovskite at high temperature. Geophys Res Lett (in press)Google Scholar
  22. Navrotsky A (1988) Experimental studies of mineral energetics. In: Salje E (ed) Physical Properties and Thermodynamic Behavior of Minerals. D Reidel Publish Company, Dordrecht, Holland, pp 403–432Google Scholar
  23. Navrotsky A (1989) Thermochemistry of perovskites. In: Navrotsky A and Weidern DJ (eds) Perovskite — Structure of Great Interest to Geophysics and Materials Science. Am Geophys Union, Washington, DC (in press)Google Scholar
  24. O'Keeffe M, Hyde BG, Bovin JO (1979) Contribution to the crystal chemistry of orthorhombic perovskites: MgSiO3 and NaMgF3. Phys Chem Minerals 4:299–305Google Scholar
  25. Ringwood AE, Seabrook M (1963) High-pressure phase transformations in germanate pyroxenes and related compounds. J Geophys Res 68:4601–4609Google Scholar
  26. Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the crystal chemistry of GdFeO3type perovskites. Am Mineral 68:1189–1198Google Scholar
  27. Shirane G, Pepinsky R (1953) Phase transitions in antiferroelectric PbHfO3. Phys Rev 91:812–815Google Scholar
  28. Shirane G, Hoshino S (1954) X-ray study of phase transitions in PbZrO3 containing Ba or Sr. Acta Crystallogr 7:203–210Google Scholar
  29. Shirane G, Newnham R, Pepinsky R (1954) Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Phys Rev 96:581–588Google Scholar
  30. Williams Q, Jeanloz R, McMillan P (1987) Vibrational spectrum of MgSiO3 perovskite: Zero pressure Raman and mid-infrared spectra to 27 GPa. J Geophys Research 92:8116–8128Google Scholar
  31. Wolf G, Bukowimski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: Implications for lower mantle composition. In: Manghnani M, Syono Y (eds) High-Pressure Research in Geophysics, Am Geophys Union, Washington, DC, 313–331Google Scholar
  32. Yagi T, Mao HK, Bell Pm (1978) Structure and crystal chemistry of perovskite-type MgSiO3. Phys Chem Minerals 3:97–110Google Scholar
  33. Yeganeh-Haeri A, Weidner DJ (1987) Single-crystal elastic properties of perovskite: MgSiO3. Eos Transactions Am Geophys Union 68:1469Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Nancy L. Ross
    • 1
  • Robert M. Hazen
    • 1
  1. 1.Geophysical Laboratory, Carnegie Institution of WashingtonWashington, DCUSA
  2. 2.Department of Geological SciencesUniversity College LondonLondonUK

Personalised recommendations