, Volume 190, Issue 3, pp 415–425 | Cite as

Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant

  • K. Niehaus
  • D. Kapp
  • A. Pühler


Mutants of the symbiotic soil bacterium Rhizobium meliloti that fail to synthesize the acidic exopolysaccharide EPS I were unable to induce infected root nodules on Medicago sativa L. (alfalfa). These strains, however, elicited pseudonodules that contained no infection threads or bacteroids. The cortical cell walls of the pseudonodules were abnormally thick and incrusted with an autofluorescent material. Parts of these cell walls and wall appositions contained callose. Biochemical analysis of nodules induced by the EPS I-deficient R. meliloti mutant revealed an increase of phenolic compounds bound to the nodule cell walls when compared with the wild-type strain. These microscopic and biochemical data indicated that a general plant defence response against the EPS I-deficient mutant of R. meliloti was induced in alfalfa pseudonodules. Following prolonged incubation with the EPS I-deficient R. meliloti mutant, the defence system of the alfalfa plant could be overcome by the rhizobium mutant. In the case of the delayed infections, the mutants colonized lobes of the pseudonodules, but the infection threads in these nodules had an abnormal morphology. They were greatly enlarged and did not contain the typical gum-like matrix inside. The bacteria were tightly packed. Based on the mechanism of phytopathogenic interactions, we propose that EPS I or a related compound may act as a suppressor of the alfalfa plant defence system, enabling R. meliloti to infect the plant.

Key words

Defense system (suppression) Exopolysaccharide Medicago Nodulation Symbiosis Rhizobium 





Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlborn, B., Werner, D. (1991) Inhibition of 1,3-β-glucan synthase from Glycine max and Pisum sativum by exopolysaccharides of Bradyrhizobium japonicum and Rhizobium leguminosarum. Physiol. Mol. Plant Pathol. 39, 299–307Google Scholar
  2. Bender, G.L., Nayodu, M., Goydych, W., Rolfe, B.G. (1987) Early infection events of the non-legume Parasponia andersonii by Bradyrhizobium. Plant Sci. 51, 285–294Google Scholar
  3. Berry, A. M., McCully, M. E. (1990) Callose-containing deposits in relation to root hair infections of Alnus rubra by Frankia. Can. J. Bot. 68, 798–802Google Scholar
  4. Bonhoff, A., Rieth, B., Golecki, J., Grisebach, H. (1987) Race cultivar-specific differences in callose deposition in soybean roots following infection with Phytophthora megasperma f.sp. glycinea. Planta 172, 101–105Google Scholar
  5. Brewin, N.S. (1991) Development of the legume root nodule. Annu. Rev. Cell Biol. 7, 191–226Google Scholar
  6. Caetano-Anolles, G., Gresshoff, P.M. (1991) Excision of nodules induced by Rhizobium meliloti exopolysaccharide mutants release autoregulation in alfalfa. J. Plant Physiol. 138, 765–767Google Scholar
  7. Casse, F., Boucher, C., Julliot, J.S., Michel, M., Denarie, J. (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J. Gen. Microbiol. 113, 229–242Google Scholar
  8. Coplin, D.L., Cook, D. (1990) Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Mol. Plant-Microbe Interact. 3, 271–279Google Scholar
  9. Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., Marrie, T.J. (1987) Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 44, 435–464Google Scholar
  10. Dalkin, K., Edwards, R., Edington, B., Dixon, R.A. (1990) Stress responses in alfalfa (Medicago sativa L.). Plant Physiol. 92, 440–446Google Scholar
  11. Dart, P.J. (1975) Legume root nodule initiation and development. In: The development and functions of roots, pp. 468–506, Torrey, J.G., Clarkson, D.T., eds. Academic Press, London New YorkGoogle Scholar
  12. Dazzo, F.B., Truchet, G., Sherwood, S.E., Hrabak, E.M., Abe, M., Pankratz, S.H. (1984) Specific phases of root hair attachment in Rhizobium trifolii — clover symbiosis. Appl. Environ. Microbiol. 48, 1140–1150Google Scholar
  13. De Faria, S.M., Hay, G.T., Sprent, J.I. (1988) Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. J. Gen. Microbiol. 134, 2291–2296Google Scholar
  14. Diaz, C.L., Melchers, L.S., Hooykass, P.J.J., Lugtenberg, B.J.J., Kijne, J.W. (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338, 579–581Google Scholar
  15. Djordjevic, M.A., Gabriel, D.W., Rolfe, B.G. (1987) Rhizobium-The refined parasite of legumes. Annu Rev. Phytopathol. 25, 145–168Google Scholar
  16. Evans, N.A., Hoyne, A. (1982) A fluorochrome from aniline blue: Structure, synthesis and fluorescence properties. Aust. J. Chem. 35, 2571–2575Google Scholar
  17. Finan, T.M., Hirsch, A.M., Leigh, S.A., Johanson, E., Kuldau, G.A., Deegan, S., Walker, G.C., Signer, E.R. (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40, 869–877Google Scholar
  18. Fisher, R.F., Long, S.R. (1992) Rhizobium — plant signal exchange. Nature 357, 655–660Google Scholar
  19. Glazebrook, J., Walker, G.C. (1989) A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56, 661–672Google Scholar
  20. Hargreaves, J.A., Keon, J.P.R. (1986) Cell wall modifications associated with the resistance of cereals to fungal pathogens. In: Biology and molecular biology of plant-pathogen interactions (NATO ASI Series, vol. H1), Bailey, J. (ed.) Springer-Verlag, Berlin HeidelbergGoogle Scholar
  21. Her, G.R., Glazebrook, J., Walker, G.C., Reinhold V.N. (1990) Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021. Carbohydr. Res. 198, 305–312Google Scholar
  22. Jansson, P.E., Kenne, L., Lindberg, B., Ljunggren, H., Lönngren, J., Ruden, U., Svensson, S. (1977) Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation. J. Am. Chem. Soc. 99, 3812–3815Google Scholar
  23. Kapp, D., Niehaus, K., Quandt, J., Müller, P., Pühler, A. (1990) Cooperative action of Rhizobium meliloti nodulation and infection mutants during the process of forming mixed infected alfalfa nodules. Plant Cell 2, 139–151Google Scholar
  24. Kauss, H. (1987) Some aspects of calcium-dependent regulation in plant metabolism. Annu Rev. Plant Physiol. 38, 47–72Google Scholar
  25. Klein, S., Hirsch, A.M., Smith, C.A., Signer, E.R. (1988) Interaction of nod and exo mutants of Rhizobium meliloti in alfalfa nodulation. Mol. Plant-Microbe Interact. 1, 94–100Google Scholar
  26. Kondorosi, E., Gyuris, J., Schmidt, J., John, M., Dudu, E., Hoffmann, R., Schell, J., Kondorosi, A. (1989) Positive and negative control of nod gene expression in R. meliloti is required for optimal nodulation. EMBO J, 8, 1331–1340Google Scholar
  27. Kovats, K, Binder, A., Hohl, H.R. (1991) Cytology of induced systemic resistance of tomato to Phytophthora infestans. Planta 183, 491–496Google Scholar
  28. Kumarasinghe, R.M.K., Nutman, P.S. (1977) Rhizobium stimulated callose formation in clover root hairs and its relation to infection. J. Exp. Bot 28, 961–976Google Scholar
  29. Levery, S.B., Zahn, H., Lee, C.C., Leigh, J.A., Hakomori, S-I. (1991) Structural analysis of a second acidic exopolysaccharide of Rhizobium meliloti that can function in alfalfa root nodule invasion. Carbohydr. Res. 210, 339–347Google Scholar
  30. Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.C., Denarie, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784Google Scholar
  31. Lewis, N.G., Yamamoto, E. (1990) Lignin: Occurrence, biogenesis and biodegradation. Annu Rev. Plant Physiol. Plant Mol. Biol. 41, 455–496Google Scholar
  32. Matern, U., Kneusel, R.E. (1988) Phenolic compounds in plant disease resistance. Phytoparasitica 16, 153–170Google Scholar
  33. Moerschbacher, B.M., Noll, U., Gorrichon, L., Reisener, H.J. (1990) Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiol. 93, 465–470Google Scholar
  34. Morris, V.J., Brownsey, G.J., Harris, J.E., Gunning, A.P., Stevens, B.J.H. (1989) Cation-dependent gelation of the acidic extracellular polysaccharides of Rhizobium leguminosarum: a non-specific mechanism for the attachment of bacteria to plant roots. Carbohydr. Res. 191, 315–320Google Scholar
  35. Müller, P., Hynes, M.F., Kapp, D., Niehaus, K., Pühler, A. (1988) Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants. Mol. Gen. Genet. 211, 17–26Google Scholar
  36. Newman, G.R., Hobot, J.A. (1987) Modern acrylics for post-embedding immunostain techniques. J. Histochem. Cytochem. 35, 971–981Google Scholar
  37. O'Brien, T.P., Feder, N., McCully, M.E. (1965) Polychromatic staining of plant cell walls by toluidine blue 0. Protoplasma 59, 366–373Google Scholar
  38. O'Connell, R.J., Bailey, J.A. (1986) Cellular interactions between Phaseolus vulgaris and the hemibiotrophic fungus Colletotrichum lindemuthianum In: Biology and molecular biology of plant-pathogen interactions (NATO ASI Series, vol. H1), Bailey, J., ed. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  39. Parniske, M., Zimmermann, C., Cregan, P.B., Werner, D. (1990) Hypersensitive reaction of nodule cells in the Glycine sp./Bradyrhizobium japonicum-symbiosis occurs at the genotype-specific level. Bot. Acta 103, 143–148Google Scholar
  40. Peters, N.K., Frost, J.W., Long, S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233, 977–980Google Scholar
  41. Pühler, A., Arnold, W., Buendia-Claveria, A., Kapp, D., Keller, M., Niehaus, K., Quandt, J., Roxlau, A., Weng, W.M. (1991) The role of the Rhizobium meliloti exopolysaccharide EPS I and EPS II in the infection process of alfalfa nodules. In: Advances in molecular genetics of plant-microbe interactions, vol. 1, pp. 189–194, Hennecke, H., Verma, D.P.S., eds. Kluwer Academic PublishersGoogle Scholar
  42. Recourt, K., van Tunen, A.J., Mur, L.A., van Brüssel, A.A.N., Lugtenberg B.J.J., Kijne, J.W. (1992) Activation of flavonoid biosynthesis in roots of Vicia sativa sbsp. nigra plants by inoculation with Rhizobium leguminosarum biovar viciae. Plant Mol. Biol. 19, 411–420Google Scholar
  43. Reiss, H.D., Hert, W. (1979) Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence. Planta 146, 615–621Google Scholar
  44. Robertson, J.G., Lyttleton, P., Pankhurst, C.E. (1981) Preinfection and infection in the legume-Rhizobium symbiosis. In: Current perspectives in nitrogen fixation, pp. 280–291 Gibson, A.H., Newton W.E. eds. Australian Academy of Science, CanberraGoogle Scholar
  45. Scheel, D., Parker, J.E. (1990) Elicitor recognition and signal transduction in plant defence gene activation. Z. Naturforsch. 45c, 569–575Google Scholar
  46. Schultze, M., Quiclet-Sire, B., Kondorosi, E., Virelizier, H., Glushka, J.N., Endre, G., Gero, S.D., Kondorosi, A. (1992) Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc. Natl. Acad. Sci. USA 89, 192–196Google Scholar
  47. Sethi, R.S., Reporter, M. (1981) Calcium localization pattern in clover root hair cells associated with infection process: studies with Aureomycin. Protoplasma 105, 321–325Google Scholar
  48. Stone, B.A., Evans, N.A., Bonig, I., Clarke, A.E. (1984) The application of sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122, 191–195Google Scholar
  49. Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., deBilly, F., Prome, J.-C., Denarie J. (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351, 670–673Google Scholar
  50. Turgeon, B.G., Bauer, W.D. (1985) Ultrastructure of infection thread development during the infection of soybean Glycine max by Rhizobium japonicum. Planta 163, 328–349Google Scholar
  51. Urzainqui, A, Walker, G.C. (1992) Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants. J. Bacteriol. 174, 3403–3406Google Scholar
  52. Williams M.N.V., Hollingsworth R.I., Klein S., Signer E.R. (1990) The symbiotic defects of Rhizobium meliloti is suppressed by lpsZ+, a gene involved in lipopolysaccharide biosynthesis. J. Bacteriol. 172, 2622–2632Google Scholar
  53. Zhan H., Levery S.B., Lee C.C., Leigh J.A. (1989) A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion. Proc. Natl. Acad. Sci. USA 86, 3055–3059Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • K. Niehaus
    • 1
  • D. Kapp
    • 1
  • A. Pühler
    • 1
  1. 1.Universität Bielefeld, Fakultät für Biologie, Lehrstuhl für GenetikBielefeldFRG

Personalised recommendations