Journal of Cryptology

, Volume 4, Issue 2, pp 151–158 | Cite as

Bit commitment using pseudorandomness

  • Moni Naor
Article

Abstract

We show how a pseudorandom generator can provide a bit-commitment protocol. We also analyze the number of bits communicated when parties commit to many bits simultaneously, and show that the assumption of the existence of pseudorandom generators suffices to assure amortized O(1) bits of communication per bit commitment.

Key words

Cryptographic protocols Pseudorandomness Zero-knowledge proof systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    M. Blum, Coin flipping by telephone, Proc. 24th IEEE Campcon, 1982, pp. 133–137.Google Scholar
  2. [BM]
    M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudorandom bits, SIAM Journal on Computing, Vol. 13 (1984), pp. 850–864.Google Scholar
  3. [BCC]
    G. Brassard, D. Chaum, and C. Crépeau, Minimum disclosure proofs of knowledge, Journal of Computer and System Sciences, Vol. 37 (1988). pp. 156–189.Google Scholar
  4. [CDG]
    D. Chaum, I. Damgård, and J. van de Graaf, Multiparty computations ensuring secrecy of each party's input and correctness of the output, Proc. Crypto '87, p. 462.Google Scholar
  5. [FS]
    A. Fiat and A. Shamir, How to prove yourself, Proc. Crypto '86, pp. 641–654.Google Scholar
  6. [GGM]
    O. Goldreich, S. Goldwasser, and M. Micali, How to construct random functions, Journal of the ACM, Vol. 33 (1986), pp. 792–807.Google Scholar
  7. [GMW1]
    O. Goldreich, M. Micali, and A. Wigderson, Proofs that yield nothing but their validity and a methodology of cryptographic protocol design, Proc. 27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 174–187.Google Scholar
  8. [GMW2]
    O. Goldreich, M. Micali, and A. Wigderson, How to play any mental game, Proc. 19th ACM Symposium on Theory of Computing, 1987, pp. 218–229.Google Scholar
  9. [H]
    J. Hastad, Pseudorandom generators under uniform assumptions, Proc. 22nd ACM Symposium on Theory of Computing, 1990, pp. 395–404.Google Scholar
  10. [ILL]
    I. Impagliazzo, L. Levin, and M. Luby, Pseudorandom generation from one-way functions, Proc. 21st ACM Symposium on Theory of Computing, 1989, pp. 12–24.Google Scholar
  11. [IL]
    I. Impagliazzo and M. Luby, One-way functions are essential to computational based cryptography, Proc. 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 230–235.Google Scholar
  12. [IY]
    R. Impagliazzo and M. Yung, Direct zero-knowledge protocols, Proc. Crypto '87, pp. 40–51.Google Scholar
  13. [J]
    J. Justesen, A class of constructive asymptotically good algebraic codes, IEEE Transactions on Information Theory, Vol. 18 (1972), pp. 652–656.Google Scholar
  14. [KMO]
    J. Kilian, S. Micali, and R. Ostrovsky, Minimum resource zero-knowledge proofs, Proc. 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 474–479.Google Scholar
  15. [Y]
    A. C. Yao, Theory and applications of trapdoor functions, Proc. 23rd Symposium on Foundations of Computer Science, 1982, pp. 80–91.Google Scholar

Copyright information

© International Association for Cryptologic Research 1991

Authors and Affiliations

  • Moni Naor
    • 1
  1. 1.IBM Almaden Research CenterSan JoseUSA

Personalised recommendations