, Volume 190, Issue 2, pp 176–181

Occurrence of a herbicide-resistant acetyl-coenzyme A carboxylase mutant in annual ryegrass (Lolium rigidum) selected by sethoxydim

  • F. J. Tardif
  • J. A. M. Hokum
  • S. B. Powles


The spectrum of herbicide resistance was determined in an annual ryegrass (Lolium rigidum Gaud.) biotype (SLR 3) that had been exposed to the grass herbicide sethoxydim, an inhibitor of the plastidic enzyme acetylcoenzyme A carboxylase (ACCase, EC, for three consecutive years. This biotype has an 18-fold resistance to sethoxydim and enhanced resistance to other cyclohexanedione herbicides compared with a susceptible biotype (VLR 1). The resistant biotype also has a 47- to >300-fold cross-resistance to the aryloxyphenoxypropanoate herbicides which share ACCase as a target site. No resistance is evident to herbicide with a target site different from ACCase. The absorption of [4-14C]sethoxydim, the rate of metabolic degradation and the nature of the herbicide metabolites are similar in the resistant and susceptible biotypes. While the total activity of the herbicide target enzyme ACCase is similar in extracts from the two biotypes, the kinetics of herbicide inhibition differ. The concentrations of sethoxydim and tralkoxydim required to inhibit the activity of ACCase by 50% are 7.8 and >9.5 times higher, respectively, in the resistant biotype. The activity of ACCase from the resistant biotype was also less sensitive to aryloxyphenoxypropanode herbicides than the susceptible biotype. The spectrum of resistance at the whole-plant level is correlated with resistance at the ACCase level and confirms that a less sensitive form of the target enzyme endows resistance in biotype SLR 3.

Key words

Aryloxyphenoxypropanoate Cyclohexanedione Herbicide metabolism Lolium (herbicide resistance) Target site resistance 



acetyl-coenzyme A carboxylase






dose giving 50% reduction of growth


dose giving 50% reduction of germination


lethal dose 50


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • F. J. Tardif
    • 1
  • J. A. M. Hokum
    • 1
  • S. B. Powles
    • 1
  1. 1.Department of Crop ProtectionWaite Agricultural Research Institute, The University of AdelaideGlen OsmondAustralia

Personalised recommendations