Advertisement

Journal of Comparative Physiology A

, Volume 176, Issue 4, pp 551–562 | Cite as

The response of the hovering hawk moth Macroglossum stellatarum to translatory pattern motion

  • W. M. Farina
  • D. Kramer
  • D. Varjú
Original Papers

Abstract

  1. 1.

    The European hawk moth Macroglossum stellatarum, while collecting nectar in hovering flight in front of flowers, follows moving stripe patterns in the lateral visual field. This response counteracts a second one, that is the animals' effort to stabilize their distance from dummy flowers. We investigated the response to motion stimuli in the lateral visual field using sinusoidally oscillating stripe patterns (Fig. 1), as well as its interaction with the distance stabilizing response.

     
  2. 2.

    In both responses moths attempt to compensate for image speed. The balance between the two depends on the number of elementary motion detectors stimulated by the dummy flower and the stripe pattern, respectively. Increasing the diameter of the dummy flower (Figs. 2 to 4) or the spatial frequency of the stripe pattern (Fig. 7) shifts the balance in favour of distance stabilization. The reverse is true when the length of the stripes in the pattern (Fig. 5) or their number is increased (Fig. 6). It does not matter whether the stripe pattern is presented in the lateral (Fig. 4A) or in the dorsal and ventral visual field (Fig. 4B).

     
  3. 3.

    The gain-frequency relations of the response to the lateral stripe pattern obtained with dummies in two different positions within the drum have their maxima around 3 Hz and decline rapidly towards lower and higher frequencies like the response of a bandpass filter. The distance stabilizing response also has bandpass properties, but with a broad plateau between 0.15 and 5 Hz (Fig. 8). The most likely explanation for this difference is that there is a regional or direction-dependent variation of motion detector properties.

     
  4. 4.

    The responses to ramp-like stimuli are phasic in accordance with the amplitude frequency characteristics, but the responses to progressive (front to back) and regressive motion of the pattern differ (Figs 9, 10).

     
  5. 5.

    The response appears to depend on the azimuthal position of the stripe pattern within the visual field (Fig. 11). It is strongest when the pattern covers equally large parts of the frontal and caudal visual fields. The optomotor sensitivity to translational pattern motion is higher in the frontal than in the caudal visual field (Fig. 12, Table 1).

     
  6. 6.

    When the stripe pattern on one side is removed, the response amplitude is halved. There is no detectable turning response around the vertical axis to the oscillation of the stripe pattern (Fig. 13, Table 2).

     
  7. 7.

    The possible role of the response to pattern movements parallel to the longitudinal body axis under natural conditions is discussed.

     

Key words

Hawk moth Visually guided behaviour Drift compensation Velocity response Gain-frequency relationship 

Abbreviations

DCR

drift compensating response

DSR

distance stabilizing response

EMD

elementary motion detector

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartsch K, Warrant EJ (1994) The nonspherical superposition eye of Macroglossum stellatarum (Lepidoptera, sphingidae). In: Elsner N, Breer H (eds) Göttingen Neurobiology Report 1994. Thieme, Stuttgart New YorkGoogle Scholar
  2. Burchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in insects. Plenum Press, New York London, pp 561–621Google Scholar
  3. Collett TS (1980a) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol 138: 271–282Google Scholar
  4. Collett TS (1980b) Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J Comp Physiol 140: 145–158Google Scholar
  5. Collett TS, Land MF (1975) Visual control of flight behviour in the hoverfly, Syritta pipiens L. J Comp Physiol 99: 1–66Google Scholar
  6. Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided truning in house-flies. J Comp Physiol A 161: 777–783Google Scholar
  7. Egelhaaf M, Borst A (1993) Movement detection in Arthropods. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam London New York, 53–77Google Scholar
  8. Farina WM, Varjú D (1993) The response of the hawk moth Macroglossum stellatrum to translatory movements of stripe pattern. In: Elsner N, Heisenberg M (eds) Gene-Brain-Behaviour. Thieme, Stuttgart New York, p 370Google Scholar
  9. Farina WM, Varjú D, Zhou Y (1994) The regulation of distance to dummy flowers duirng hovering flight in hawk moth Macroglossum stellatarum. J Comp Physiol A 174: 239–247Google Scholar
  10. Götz KG (1975) The optomotor equilibrium of the Drosophila navigation system. J Comp Physiol 99: 187–215Google Scholar
  11. Holst E von, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37: 564–476Google Scholar
  12. Junger W, Dahmen HU (1991) Response to self-motion in waterstriders: visual discrimination between rotation and translation. J Comp Physiol A 169: 641–666Google Scholar
  13. Junger W, Varjú D (1990) Drift compensation and its sensory basis in waterstriders (Gerris paludum F.). J Comp Physiol A 167: 441–456Google Scholar
  14. Kelber A (1993) Visuelle Orientierung im Fluge: Die schwebenden Wächterinnen der stachellosen Biene Tetragonisca angustula (Meliponinae, Hymenoptera). Dissertation Universität TübingenGoogle Scholar
  15. Kelber A, Zeil J (1990) A robust procedure for visual stabilisation of hovering flight position in guard bees (Trigona (Tetragonisca angustula, Meloponinae). J Comp Physiol A 167: 569–577Google Scholar
  16. Kern R (1993) The response of the hawk moth Macroglossum stellatarum L. to translatory, rotatory, and combined visual stimulation. In: Elsner N, Heisenberg M (eds) Gener-Brain-Behaviour. Thieme, Stuttgart New York, p 367Google Scholar
  17. Kern R, Varjú D (1994) Flow-field analysis by means of eye region specialisation: Free-flight experiments in the hawk moth Macroglossum. In: Elsner N, Breer H (eds) Göttingen Neurobiology Report 1994. Tieme, Stuttgart New York, p 435Google Scholar
  18. Koenderink JJ, Doom AJ van (1987) Facts on optic flow. Biol. Cybern 56: 247–254Google Scholar
  19. Kramer D, Varjú D (1991) Velocity compensation in the hawk moth Macroglossum to vertical stripe patterns moving parallel to the longitudinal body axis. Verh Dtsch Zool Ges 84, p 351Google Scholar
  20. Land MF (1992) Visual tracking and pursiut: humans and arthropods compared. J Insect Physiol 38: 939–951Google Scholar
  21. Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). A description and analysis. J Comp Physiol 89: 331–357Google Scholar
  22. Lazzari C, Varjú D (1990) Visual lateral fixation in the haematophagous bug Triatoma infestans. J Comp Physiol A 167: 527–531Google Scholar
  23. Paul H, Nalbach HO, Varjú D (1990) Eye movements in the rock crab Pachygrapsus marmoratus walking along straight and curved paths. J Exp Biol 154: 81–97Google Scholar
  24. Pfaff M, Varjú D (1991) Machanisms of visual distance perception in the hawk moth Macroglossum stellatarum. Zool Jb Physiol 95: 315–321Google Scholar
  25. Preiss R (1991) Separation of translation and roatation by means of eye-region specialization. J Insect Behav 4: 209–219Google Scholar
  26. Reichardt W (1973) Musterinduzierte Flugorientierung. Verhaltensversuche an der Fliege Musca domestica. Naturwissenschaften 60: 122–138Google Scholar
  27. Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen (Folgerungen aus Experimenten an dem Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b: 674–689Google Scholar
  28. Srinivasan MV, Lehrer M, Kirchner W, Zhang SW (1991) Range perception through apparent image speed in freely-flying honeybees. Visual Neurosci 6: 519–535Google Scholar
  29. Varjú D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeistmuster. Z Naturforsch 14b: 724–735Google Scholar
  30. Varjú D (1973) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. In: Lueken B, Scharf JH (eds) Neue Ergebnisse zur Informationsaufnahme und Informationsverarbeitung in Sinnesorganen. Nova Acta Leopoldina, Neue Folge, 37/2: 173–193Google Scholar
  31. Varjú D (1975) Stationary and dynamic responses during visual edge fixation by a walking insect. Nature 255: 330–332Google Scholar
  32. Varjú D (1977) Systemtheorie für Biologen und Mediziner. Springer, Berlin Heidelberg New York, pp 134–138Google Scholar
  33. Varjú D (1987) The interaction between visual edge fixation and skototaxis in the mealworm beetle Tenebrio molitor. J Comp Physiol A 160: 543–552Google Scholar
  34. Varjú D (1990) A note on the reafference principle. Biol. Cybern 63: 315–323Google Scholar
  35. Wehner R (1981) Spatial vision in Arthropods. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates (Handbook of sensory physiology, vol IIV/6C). Springer, Berlin Heidelberg New York, pp 187–218Google Scholar
  36. Wehrhahn Ch (1985) Visual guidance of flies during flight In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharamology, Vol 6. Pergamon Press, Oxford New York Toronto Sydney Paris Frankfurt, 673–687Google Scholar
  37. Wehrhahn Ch, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol Cybern 38: 179–186Google Scholar
  38. Wicklein M (1994) Neuroanatomie der optischen Ganglien und Electrophysiologie bewegungssensitiver interneurone in der Lobula Platte von Macroglossum stellatarum. Dissertation Universität TübingenGoogle Scholar
  39. Zanker J, Collett TS (1985) The optomotor system on the ground: on the absence of visual control of speed in walking ladybirds. J Comp Physiol A156: 395–402Google Scholar
  40. Zeil J (1983) Sexual dimorphism in the visual system of flies: The free flight behaviour of male Bibionidae (Diptera). J Comp Physiol 150: 395–412Google Scholar
  41. Zeil J (1986) The territorial flight of male houseflies (Fannia canicularis L. ). Behav Ecol Sociobiol 19: 213–219Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. M. Farina
    • 1
  • D. Kramer
    • 1
  • D. Varjú
    • 1
  1. 1.Universität Tübingen, Lehrstuhl für BiokybernetikTübingenGermany

Personalised recommendations