Advertisement

Mineralium Deposita

, Volume 30, Issue 3–4, pp 303–313 | Cite as

Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland

  • C. Halls
  • R. Zhao
Article

Abstract

The rock ‘listvenite’ is named and defined by reference to historical observations and recommendations are made so that listvenite (s.s.) can be distinguished from related carbonate-rich alteration products of ultramafic rocks. The mineralogy and tectonic setting of listvenite are reviewed, taking into account the descriptions and classifications used in the literature. The petrography of listvenite and related rocks at Cregganbaun serves as a reference to illustrate the characteristics of true listvenite and closely related products of listvenitic alteration.

Keywords

Mineral Resource Tectonic Setting Related Product Ultramafic Rock Historical Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abovian, S.B. (1978) Genetic types of listvenites of the Armenian Republic and their metallogenic significance. (Zapiski Armianskoe Otdelenie Vsesoiliznogo). Mineralogichcskogo Obshchestva. No. 9:98–109Google Scholar
  2. Ash, C.H., Arksey, R.L. (1990a) The listwanite-lode gold association in British Columbia. Geological Fieldwork 1989, A summary of Field Activities and Current Research, Province of British Columbia, Mineral Resources Division Geological Survey Branch, pp. 359–364Google Scholar
  3. Ash, C.H., Arksey, R.L. (1990b) The Atlin ultramafic allochthon: ophiolitic basement within the Cache Creek Terrane; tectonic and metallogenic significance (104N/12). A summary of Field Activities and Current Research, Province of British Columbia, Mineral Resources Division Geological Survey Branch, pp. 365–374Google Scholar
  4. Ash, C.H., Arksey, R.L. (1990c) Tectonic setting of listwanite-related gold deposits in northwestern British Columbia (104N/12). B. C. Ministry Energy, Mines and Petroleum Resources, Open File 1990-22Google Scholar
  5. Ashley, P.M. (1975) Opaque mineral assemblage formed during serpentinization in the Coolac ultramafic belt, New South Wales. J. Geol. Soc. Aust. 22:91–102Google Scholar
  6. Ashley, P.M., Brownlow J.M. (1993) In: Flood, P.G., Aitchison, J.C. (eds) New England Orogen, eastern Australia. Department of Geology and Geophysics, University of New England, Armidale, pp. 197–214Google Scholar
  7. Auclair, M., Gauthier, M., Trottier, J., Jébrak, M., Chartrand, F. (1993) Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians. Econ. Geol. 88:123–138Google Scholar
  8. Aydal, D. (1989) Gold-bearing listwaenites in the Araç Massif, Kastamonu, Turkey. Terra Nova 2:43–52Google Scholar
  9. Barker, A.J. (1990) Introduction to metamorphic textures and microstructures. Blackie, 162pGoogle Scholar
  10. Barnes, I., O'Neil, J.R., Rapp, J.B., White, D.E. (1973) Silicate-carbonate alteration of serpentine: wall rock alteration in mercury deposits of the California coast ranges. Econ. Geol. 68:388–398Google Scholar
  11. Bliss, N.W., MacLean, W.H. (1975) The paragenesis of zoned chromite from central Manitoba. Geochim. Cosmochim. Acta 39:973–990Google Scholar
  12. Böhlke, J.K., Kistler, R.W. (1986) Rb-Sr, K-Ar and stable isotope evidence from the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada Foothills metamorphic belt, California. Econ. Geol. 81:296–322Google Scholar
  13. Böhlke, J.K. (1989) Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks: intensive variables, mass transfers, and Au mineralization at Alleghany, California. Econ. Geol. 84:291–327Google Scholar
  14. Bok, I.I. (1956) Listvenites, their special features, varieties and conditions of formation. (Listvenity, ikh osobennosti, raznovidnosti i usloviya obrazovaniya). Izvestiya Akademii Nauk Kazakhskoi SSR. Ser. Geol. 22:3–22Google Scholar
  15. Borodayevskiy, N.I., Borodayevskiy, M.B. (1947) The Berezovsk Ore Field. (Berezovskoye rudnoye pole): Metallurgizdat, MoscowGoogle Scholar
  16. Buisson, G., Leblanc, M. (1985a) Gold-bearing listwaenites (Carbonatized ultramafic rocks) from ophiolite complexes. In: Gallagher, J.M., Ixer, R.A., Neary, C.R. (eds) Metallogeny of basic and ultrabasic rocks. Instn. Min. Metall. London, pp. 121–132Google Scholar
  17. Buisson, G., Leblanc, M. (1985b) Gold in carbonatized ultramafic rocks from ophiolite complexes. Econ. Geol. 80:2026–2029Google Scholar
  18. Buisson, G., Leblanc, M. (1987) Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Econ. Geol. 82:2091–2097Google Scholar
  19. Clark, W.B. (1970) Gold districts of California. California Division of Mines and Geology Bulletin 193, Sacramento, California, 186pGoogle Scholar
  20. Colvine, A.C., Fyon, J.A., Heather, K.B., Marmont, S., Smith, P.M., Troop, D.G. (1988) Archean lode gold deposits in Ontario. Mines and Minerals Division, Ontario Geological Survey, Miscellaneous Paper 139, 136pGoogle Scholar
  21. Cooper, C., Shine, C., Harrington, K., Halls, C., Zhao, R. (1991) Shear-hosted gold mineralization in South Mayo, Ireland. Abstract. In: Lumb, A.J., Brown, M.J., Smith, C.G., (eds) Exploration and the Environment, Ninth conference prospecting in areas of glaciated terrain, Edinburgh, British Geological Survey 1991Google Scholar
  22. Dana, E.S. (1909) The system of mineralogy of James Dwight Dana 1837–1868, Descriptive Mineralogy, 6th edn, New York, John Wiley & Sons, 1134pGoogle Scholar
  23. Deer, W.A., Howie, R.A., Zussman, J. (1966) An introduction to the rock-forming minerals. Longman 528pGoogle Scholar
  24. Dewey, J.F. (1963) The Lower Palaeozoic stratigraphy of central Murrisk, County Mayo, Ireland, and the evolution of the South Mayo Trough. Quart. J. Geol. Soc. (Lond) 119:313–44Google Scholar
  25. Dewey, J.F., Ryan, P.D. (1990) The Ordovician evolution of the South Mayo Trough, Western Ireland. Tectonics 9:887–901Google Scholar
  26. Dube, B., Guha, J., Rocheleau, M. (1987) Alteration patterns related to gold mineralization and their relation to CO2/H2O ratios. Mineralogy Petrology 37:267–291Google Scholar
  27. Dussel, E. (1986) Listwanites and their relationship to gold mineralization at Erickson Mine, British Columbia, Canada. Unpublished M.Sc. thesis, Western Washington University, 79pGoogle Scholar
  28. Goncharenko, A.I. (1970) Auriferous listvenites as a new type of mineralization in the northern part of the Kuznetsk Alatau. Izvestiya Tomskogo Politekhnicheskogo Instituta (Reports of the Tomsk Polytechnical Institute) 239:110–114Google Scholar
  29. Graham, J.R., Leake, B.E., Ryan, P.D. (1989) The geology of South Mayo, western Ireland. University of Glasgow, Scottish Academic Press, 75pGoogle Scholar
  30. Guha, J., Dube, B., Pilote, P., Chown, E.H., Archambault, G., Bouchard G. (1988) Gold mineralization patterns in relation to lithologic and tectonic evolution of Chibougamou mining district, Quebec, Canada. Mineral. Deposita 23:293–298Google Scholar
  31. Halls, C., Zhao, R., Shine, C., Cooper, C., Harrington, K. (1991) Listvenites and related rocks associated with gold mineralization in Co. Mayo, Ireland. Mineralogical Society of Great Britain and Ireland, Winter Conference, Cardiff, December 16–18, 1991, Industrial and Environmental Mineralogy, Programme and Abstracts, 25pGoogle Scholar
  32. Henderson, F.B. (1969) Hydrothermal alteration and ore deposition in serpentinite-type mercury deposits. Econ. Geol. 64:489–499Google Scholar
  33. Hutton, D.H.W. (1987) Strike-slip terranes and a model for the evolution of the British and Irish Caledonides. Geo. Mag. 124:405–425Google Scholar
  34. Irvine, T.N. (1967) Chromian spinel as a petrogenetic indicator, Part 2. Petrologic applications. Can. J. Earth. Sci. 4:71–103Google Scholar
  35. Ivan, P. (1985) Hydrothermally-metasomatic alterations of ultramafic rocks. In: Ivan, P., Jaros, J., Kratochvil, M., Reichwalder, P., Rojkovic, I., Spisiak J., Turanova, L. Ultramafic rocks of the Western Carpathians, Czechoslovakia. Geologicky Ustav Dionyza Stura, Bratislava, pp 171–181Google Scholar
  36. Ivan, P., Jaros, J., Kratochvil, M., Reichwalder, P., Rojkovic, I., Spisiak, J., Turanova, L. (1985) Ultramafic rocks of the Western Carpathians, Czechoslovakia. Geologicky Ustav Dionyza Stura, Bratislava. 258pGoogle Scholar
  37. Kashkai, M.A., Allakhverdiev, Sh.I. (1965) Listvenites, their origin and classification. (Listvenity, ikh genezis i klassifikatsiia: Akad. Nauk Azerbaidzhanskoi SSR), Institut Geologii im. akad. I.M. Gubkina; Izdat. Akad. Nauk Azerbaidzhanskoi SSR, Baku, 142pGoogle Scholar
  38. Kashkai, M.A. and Allakhverdiev, Sh.I. (1971) New data on listvenite and rodingite metasomatites among ultrabasites. Izvestiya Akademii Nauk SSSR Nauka: 17–26Google Scholar
  39. Kishida, A., Kerrich, R. (1987) Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode gold deposit, Kirkland Lake, Ontario. Econ. Geol. 82:649–690Google Scholar
  40. Knopf, A. (1929) The Mother Lode system of California. United States Geological Survey Professional Paper 157, 88pGoogle Scholar
  41. Korzhinskii, D.S. (1953) Review in metasomatic processes. Basic problems in theory of magmatic ore depositsGoogle Scholar
  42. Krotov, B.P. (1915) Petrographic study of west part of Miask DachiGoogle Scholar
  43. Kuleshevich, L.V. (1984) Listvenites in the greenstone belts of Eastern Karelia, Geologiya Rudnykh Mestorozhdenii (Geology of Ore Deposits) 3:112–116Google Scholar
  44. Landefeld, L.A. (1988) The geology of the Mother Lode Gold Belt, Sierra Navade Foothills metamorphic belt, California. In: Goode, A.D.T., Smyth, E.L., Birth, W.D., Bosma, L.I. (eds) Bicentennial Gold 88, Geol. Soc. Aust. (Abstr.) 22:167–172Google Scholar
  45. Leitch, C.H.B., Godwin, C.I., Brown, T.H., Taylor, B.E. (1991) Geochemistry of mineralizing fluids in the Bralorne-Pioneer mesothermal gold vein deposit, British Columbia, Canada. Econ. Geol. 86:318–353Google Scholar
  46. Lindgren, W. (1928) Mesothermal deposits (Chapter 27) In: Lindgren W. (ed) Mineral Deposits (3rd edn), McGraw-Hill Book Company, Inc, New York, pp. 598–717Google Scholar
  47. Lodochnikov, V.N. (1936) Serpentine and serpentinites of Ylchirsk and other related questions. Trudi CNLGRI, No. 38Google Scholar
  48. Madu, B.E., Nesbitt, B.E. Muehlenbachs, K. (1990) A mesothermal gold-stibnite-quartz vein occurrence in the Canadian Cordillera. Econ. Geol. 85:1260–1268Google Scholar
  49. Malpas, J., Talkington, R.W. (eds) (1979) Ophiolites of the Canadian Appalachians and Soviet Urals. Contributions to International Geological Correlation Programme Project 39-Ophiolites, Department of Geology, Memorial University of Newfoundland Report No. 8, 165pGoogle Scholar
  50. McArdle, P. (1989) Geological setting of gold mineralization in the Republic of Ireland. Trans. Instn Min. Metall. (Sect. B: Appl. earth sci.) 98:B7–12Google Scholar
  51. Murchison, R.I., de Verneuil, E., von Keyserling, A. (1845) The geology of Russia in Europe and the Ural Mountains. Volume I, Geology, London, John Murray, 700pGoogle Scholar
  52. Nixon. G.T. (1990) Geology and precious metal potential of maficultramafic rocks in British Columbia: current progress. Geological Fieldwork 1989, Paper 1990-1, A Summary of Field Activities and Current Research, Province of British Columbia. Mineral Resources Division Geological Survey Branch: 353–358Google Scholar
  53. Patey, K.S., Wilton, D.H.C. (1990) The Deer Cove mesothermal lode gold deposit, Baie Verte Peninsula, Newfoundland — A Mother Lode analogue. Vancouver'90 GAC-MAC annual meeting, program with abstracts, A102Google Scholar
  54. Ploshko, V.V. (1963) Listvenitization and carbonatization at terminal stages of Urushten igneous complex, North Caucasus. Internat. Geol. Rev. 7 (3):446–463Google Scholar
  55. Rose, G. (1837) Mineralogisch-geognostische Reise nach dem Ural, dem Altai und dem Kaspischen Meere. Volume 1: Reise nach dem nördlichen Ural und dem Altai. Berlin, C.W. Eichhoff (Verlag der Sanderschen Buchhandlung), xxx plus 641p. and plates I–VIIGoogle Scholar
  56. Rose, G. (1842) Mineralogisch-geognostische Reise nach dem Ural, dem Altai und dem Kaspischen Meere. Volume 2: Reise nach dem sudlichen Ural und dem Kaspischen Meere, Uebersicht der Mineralien und Gebirgsarten des Ural. Berlin, G.E. Reimer (Verlag der Sanderschen Buchhandlung), xv plus 606p and plates I–VGoogle Scholar
  57. Sazonov, V.N. (1975) Listvenitization and mineralization. (Listvenitizaciya i orudeneniye). Izdatelistvo Nauka, Moskva (Science Publishers, Moscow), 171pGoogle Scholar
  58. Sazonov, V.N. (1978) Chromium in the hydrothermal process (Khrom v gidrotermal'-nom protsesse): Nauka Press, MoscowGoogle Scholar
  59. Shcherban, I.P. (1967) On the genesis of listvenites. Doklady Akad, Nauk SSSR 172:448–450Google Scholar
  60. Shcherban, I.P., Borovikova, G.A. (1969) Thermodynamic data on the genesis of listwanites and listwanitized rocks. Doklady Akad, Nauk SSSR 191:448–450Google Scholar
  61. Sibson, R.H. (1977) Fault rocks and fault mechanisms. Jl Geol Soc. (Lond.) 133:191–213Google Scholar
  62. Silliman, B. (1868) Note on three new localities of tellurium minerals in California, and on some mineralogical features of the Mother vein. Proceedings of the California Academy of Natural Sciences 3 (part 5): 378–382Google Scholar
  63. Spiridonov, E.M., Prokof'yev V.Yu. (1989) Geochemical features and conditions of formation of plutonogenic gold-telluride concentrations in the Caledonides of northern Kazakhstan, Geologiya rudnikh mestorozhdeniy 31:26–39Google Scholar
  64. Spiridonov, E.M. (1991) Listvenites and zodites. International Geology Review 33 (4):397–407Google Scholar
  65. Thompson, S.J., Shine, C., Cooper, C., Halls, C., Zhao, R. (1992) Shear-hosted gold mineralization in Co. Mayo, Ireland. In: Bowden, A.A., Earls, G., O'Connor, P.G. and Pyne, J.F. (eds), The Irish Minerals Industry 1980–1990, The Irish Association for Economic Geology, Dublin pp. 21–36Google Scholar
  66. Weir, R.H., Kerrick, D.M. (1987) Mineralogie, fluid inclusion, and stable isotope studies of several gold mines in the Mother Lode, Tuolumne and Mariposa counties, California. Economic Geology 82:328–344Google Scholar
  67. Whitmore, D.R.E., Berry, L.G., Hawley, I.E. (1946) Chrome micas. The American Mineralogist 31:1–21Google Scholar
  68. Zhao, R., Halls, C., Shine, C., Cooper, C., Harrington, K. (1990) Gold mineralization at Cregganbaun in the South Mayo Terrane: turbidite, listvenite or lamprophyre related? Mineral Deposits Study Group (MDSG) annual Christmas meeting, A conference at the University of Dublin, Trinity College, 10–13 December, 1990, Programme and Abstracts, 32pGoogle Scholar
  69. Zhao, R., Halls, C., Shine, C., Cooper, C., Harrington, K. (1992) Mesothermal gold mineralization at the Cregganbaun prospect, Co Mayo: genetic significance of lithological associations, hydrothermal alteration and the tectonic regulation of quartz lode formation. Extended abstract in the conference of Geology in Europe and Beyond: Mineral deposit modelling in relation to crustal reservoirs of the ore-forming elements: The Institution of Mining and Metallurgy, 22–23 April 1992Google Scholar
  70. Zhao, R. (1994) Paragenetic and geochemical evolution of the Cregganbaun gold prospect, Co. Mayo, Republic of Ireland. PhD thesis, University of London, 327pGoogle Scholar
  71. Zharikov, V.A., Omel'yanenko, B.I. (1978) Classification of metasomatites. In: Korzhinskii, D.S. (ed), Metasomatizm i rudoobrazovaniye (Metasomatism and Ore Formation), Nauka, Moscow, pp. 9–28Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • C. Halls
    • 1
  • R. Zhao
    • 1
  1. 1.Department of GeologyRoyal School of Mines, Imperial CollegeLondonUK

Personalised recommendations