Journal of Paleolimnology

, Volume 1, Issue 2, pp 85–97

A sedimentary record of human disturbance from Lake Miragoane, Haiti

  • Mark Brenner
  • Michael W. Binford
Article

Abstract

Lake Miragoane, Haiti is one of the largest, natural freshwater lakes in the Caribbean (A=7.06 km2, zmax=41.0 m, conductivity = 350 μS cm−1). Lake waters are dominated by calcium and bicarbonate ions. The lake was thermally stratified, and oxygen profiles were clinograde during summer visits in 1983 and 1985. A 72-cm mud-water interface core was taken near the center of the lake and dated with 210Pb. The local 210Pb fallout rate is low (0.09 pCi cm−2 yr−1), about 20% of the global average. Bulk sedimentation rates ranged from 0.008 to 0.030 g cm−2 yr−1 during the past 130 years (0–8 cm depth). Sediment geochemistry and pollen have been analyzed in the topmost 58 cm of the section. Tentative ages were assigned to the core by extrapolation of 210Pb dates. According to this preliminary chronology, the bottom part of the core (58–30 cm) records pre-Columbian sedimentation (1000–500 B.P.) and contains pollen evidence of intact, dry and mesic forest. Pre-Columbian deposits are rich in organic matter (x = 30%) and relatively poor in carbonates (x = 15% as CO2). The top 30 cm of the core preserve the record since European contact (500 B.P. to present). Pollen data reveal two episodes of deforestation following European arrival. Consequent soil erosion is documented by a decrease in organic matter content (x = 15%) and an increase in carbonates (x = 27% as CO2). Surficial sediments reflect the widespread deforestation and soil loss that characterize the watershed today.

Key words

land-water interactions limnology paleolimnology 210Pb sediment geochemistry West Indies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association, 1975. Standard methods for the examination of water and wastewater, 14th ed.Google Scholar
  2. Andersen, J. M., 1976. An ignition method for determination of total phosphorus in lake sediments. Wat. Res. 10: 329–331.Google Scholar
  3. Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.Google Scholar
  4. Appleby, P. G. & F. Oldfield, 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35.Google Scholar
  5. Benoit, G. & H. F. Hemond, 1987. A biogeochemical mass balance of 210Po and 210Pb in an oligotrophic lake with seasonally anoxic hypolimnion. Geochim. Cosmochim. Acta 51: 1445–1456.Google Scholar
  6. Binford, M. W., 1983. Paleolimnology of the Peten lake district, Guatemala, I. Erosion and deposition of inorganic sediment as inferred from granulometry. Hydrobiologia 103: 199–203.Google Scholar
  7. Binford, M. W. & M. Brenner, 1986. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions. Limnol. Oceanogr. 31: 584–595.Google Scholar
  8. Binford, M. W., M. Brenner, T. J. Whitmore, A. Higuera-Gundy, E. S. Deevey & B. Leyden, 1987. Ecosystems, paleoecology, and human disturbance in subtropical and tropical America. Quat. Sci. Rev. 6: 115–128.Google Scholar
  9. Bond, R. M., 1935. Investigations of some Hispaniolan lakes (Dr. R. M. Bond's expedition) II. Hydrology and hydrography. Arch. Hydrobiol. 28: 137–161.Google Scholar
  10. Brenner, M., 1983. Paleolimnology of the Peten lake district, Guatemala, II. Mayan population density and sediment and nutrient loading of Lake Quexil. Hydrobiologia 103: 205–210.Google Scholar
  11. Burgess, G. H. & R. Franz, in press. Zoogeography of the Antillean freshwater fish fauna. In C. A. Woods (ed.), The biogeography of the West Indies: past, present, and future. E. J. Brill, Leiden.Google Scholar
  12. Candelas, G. A. & G. C. Candelas, 1963. The West Indies. In D. G. Frey (ed.), Limnology in North America. The University of Wisconsin Press, Madison: 435–450.Google Scholar
  13. Clench, W. J. & C. G. Aguayo, 1932. New Haitian mollusks. West Indian mollusks No. 5. Proc. New Engl. zool. Club 13: 35–38.Google Scholar
  14. Cobb, C. E.Jr., 1987. Haiti — against all odds. National Geographic 172: 644–671.Google Scholar
  15. Dean, W. E.Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. sediment. Petrol. 44: 242–248.Google Scholar
  16. Deevey, E. S. & M. Stuiver, 1964. Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnol. Oceanogr. 9: 1–11.Google Scholar
  17. Deevey, E. S., D. S. Rice, P. M. Rice, H. H. Vaughan, M. Brenner & M. S. Flannery, 1979. Mayan urbanism: impact on a tropical karst environment. Science 206: 298–306.Google Scholar
  18. Deevey, E. S., M. W. Binford, M. Brenner & T. J. Whitmore, 1986. Sedimentary records of accelerated nutrient loading in Florida lakes. Hydrobiologia 143: 49–53.Google Scholar
  19. Dunne, T. and L. B. Leopold, 1978. Water in Environmental Planning. W. H. Freeman & Co., New York, 818 p.Google Scholar
  20. Eakins, J. D. & R. T. Morrison, 1978. A new procedure for the determination of lead-210 in lake and marine sediments. Int. J. appl. Radiat. Isotopes 29: 531–536.Google Scholar
  21. Erten, H. N., H. R.Von Gunten, E. Rossler & M. Sturm, 1985. Dating sediments from Lake Zurich (Switzerland) with 210Pb and 137Cs. Schweiz. Z. Hydrol. 47: 5–11.Google Scholar
  22. Eyerdam, W. J., 1961. An excursion to Lake Miragoane, Haiti. Nautilus 75: 71–74.Google Scholar
  23. Goldberg, E. D., 1963. Geochronology with 210Pb. In Radioactive Dating, International Atomic Energy Agency, Vienna: 121–131.Google Scholar
  24. Guojang, W., P. H. Santschi, K. Farrenkothen, M. Sturm & C. Schuler, 1984. Postdepositional remobilization of 210Pb in freshwater sediments (abstr.). EOS, Trans. am. Geophys. Union 65: 941.Google Scholar
  25. Håkanson, L., 1981. A manual of lake morphometry. Springer-Verlag, N.Y., 78 p.Google Scholar
  26. Håkanson, L. & M. Jannson, 1983. Principles of lake sedimentology. Springer-Verlag, N.Y. 316 p.Google Scholar
  27. Hales, P. E., R. A. Perrott, J. C. Fontes, A. Rae, F. A. Street-Perrott & V. R. Switsur, 1987. Paleolimnological studies of Wallywash Great Pond, Jamaica (abstr.). INQUA programme with abstracts, XIIth Int. Congress, Ottawa, 31 July–August 9, 1987.Google Scholar
  28. Higuera-Gundy, A., in press. Recent vegetation changes in southern Haiti. In C. A. Woods (ed.), The biogeography of the West Indies: past, present, and future. E. J. Brill, Leiden.Google Scholar
  29. Holdridge, L. R., 1945. A brief sketch of the flora of Hispaniola. In F. Verdoorn (ed.), Plants and plant science in Latin America. Chronica Botanica Co., Waltham, MA.: 76–78.Google Scholar
  30. Lewis, W. M.Jr., 1973. The thermal regime of Lake Lanao (Philippines) and its theoretical implications for tropical lakes. Limnol. Oceanogr. 18: 200–217.PubMedGoogle Scholar
  31. Lewis, W. M.Jr., 1983. A revised classification of lakes based on mixing. Can. J. Fish. aquat. Sci. 40: 1779–1787.Google Scholar
  32. Nozaki, Y., D. J. DeMaster, D. M. Lewis & K. K. Turekian, 1978. Atmospheric Pb-210 fluxes determined from soil profiles. J. geophys. Res. 83: 4047–4051.Google Scholar
  33. Rice, D. S., P. M. Rice & E. S. Deevey, 1985. Paradise lost: Classic Maya impact on a lacustrine environment. In M. Pohl (ed.), Prehistoric lowland Maya environment and subsistence economy. Papers of the Peabody Museum of Archaeology and Ethnology Vol. 77. Harvard University Press, Cambridge, MA: 91–105.Google Scholar
  34. Rouse, I. & C. Moore, 1984. Cultural sequence in southwestern Haiti. Bull. Bur. nat. Ethnol. 1: 25–38.Google Scholar
  35. Turekian, K. K., Y. Nozaki & L. K. Benninger, 1977. Geochemistry of atmospheric radon and radon products. Annu. Rev. Earth Planet. Sci. 5: 227–255.Google Scholar
  36. Vaughan, H. H., E. S. Deevey & S. E. Garrett-Jones, 1985. Pollen stratigraphy of two cores from the Peten lake district, with an appendix on two deep-water cores. In M. Pohl (ed.), Prehistoric lowland Maya environment and subsistence economy. Papers of the Peabody Museum of Archaeology and Ethnology, Vol. 77. Harvard University Press, Cambridge, MA: 73–89.Google Scholar
  37. Woodring, W. P., J. S. Brown & W. S. Burbank, 1924. Geology of the Republic of Haiti. Republic of Haiti Dept. of Pub. Works, Geol. Survey of the Republic of Haiti, Port-Au-Prince, 631 pp.Google Scholar
  38. Woods, C. A., 1987. The threatened and endangered birds of Haiti: lost horizons and new hopes. Proc. Delacour/IFCB Symp. 2: 385–430.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Mark Brenner
    • 1
  • Michael W. Binford
    • 2
  1. 1.Department of Natural SciencesFlorida State MuseumGainesvilleUSA
  2. 2.Graduate School of DesignHarvard UniversityCambridgeUSA

Personalised recommendations