Anatomy and Embryology

, Volume 187, Issue 3, pp 291–297 | Cite as

Morphological evidence for secondary formation of the tail gut in the rat embryo

  • Srećko Gajović
  • Ljiljana Kostović-Knežević
  • Anton Švajger


The secondary body formation is a developmental mechanism occurring in the caudal part of the embryo in which embryonic structures arise from a mass of mesenchymal cells without previous formation of germ layers. The formation of the tail gut by this mechanism was investigated on transverse serial semithin and ultrathin sections of 12-, 13-, 14- and 15-day rat embryo tails. The tail gut, together with the tail portion of the notochord, originates from an axial mass of condensed mesenchymal cells named tail cord. Formation of the tail gut involves the appearance of large intercellular junctions among tail cord cells, and rearrangement of these cells around a newly formed lumen. Mesenchymal characteristics of these cells are gradually lost, and they simultaneously acquire the morphology of epithelial cells. Some cells of the tail cord, located ventral to the tail gut, do not participate in the tail gut formation and form a separate mass of cells without any definitive morphogenetic fate. This surplus group of cells is first evident in 12-day embryos, and it increases in mass during the following 3 days. In 15-day embryos, after the tail gut has completely disappeared, the surplus cells represent all that remains of the tail cord. The mesenchymal-epithelial transformation of the tail cord cells into the cells of the tail gut, and the appearance of the surplus cells, could be considered as the main morphological arguments for the secondary formation of the tail gut.

Key words

Tail gut Tail cord Secondary body formation Gut Rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beddington RSP (1986) Analysis of tissue fate and prospective potency of egg cylinder. In: Rossant J, Pedersen RA (eds) Experimental approaches to mammalian embryonic development. Cambridge University Press, Cambridge, pp 121–147Google Scholar
  2. Butcher EO (1929) The development of the somites in the white rat (Mus norvegicus albinus) and the fate of the myotomes, neural tube, and gut in the tail. Am J Anat 44:381–439Google Scholar
  3. Criley BB (1969) Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J Morphol 128:465–502Google Scholar
  4. Gajović S, Kostović-Knežević Lj, Švajger A (1989) Origin of the notochord in the rat embryo tail. Anat Embryol 179:305–310Google Scholar
  5. Griffith CM, Wiley MJ (1990) Sialoconjugates and development of the tail bud. Development 108:479–489Google Scholar
  6. Griffith CM, Wiley MJ, Sanders EJ (1992) The vertebrate tail bud: three germ layers from one tissue. Anat Embryol 185:101–113Google Scholar
  7. Holmdahl DE (1925) Experimentelle Untersuchungen über die Lage der Grenze zwischen primärer und sekundärer Körperentwicklung beim Huhn. Anat Anz 59:393–396Google Scholar
  8. Holmdahl DE (1951) Die zweifache Morphogenese des Vertebratenorganismus. Die primäre (indirekte) und sekundäre (direkte) Körperentwicklung. Z Mikrosk Anat Forsch 57:359–392Google Scholar
  9. Jelinek R, Seichert V, Klika E (1969) Mechanism of morphogenesis of caudal neural tube in the chick embryo. Folia Morphol (Praha) 17:355–367Google Scholar
  10. Jolly J, Férester-Tadié M(1936) Recherches sur l'oeuf du rat et de la souris. Arch Anat Microsc 32:323–390Google Scholar
  11. Lawson KA, Pedersen RA, Van de Geer S (1987) Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101:627–652Google Scholar
  12. Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911Google Scholar
  13. Peter K (1951) Die zweifache Entwicklung des Wirbeltierkörpers in finaler, erhaltungsfunktioneller Betrachtung. Z Mikrosk Anat Forsch 57:393–401Google Scholar
  14. Schoenwolf GC (1977) Tail (end) bud contributions to the posterior region of the chick embryo. J Exp Zool 201:227–246Google Scholar
  15. Schoenwolf GC (1978) Effects of complete tail bud extirpation on early development of the posterior region of the chick embryo. Anat Rec 192:289–296Google Scholar
  16. Schoenwolf GC (1979) Histological and ultrastructural observations of tail bud formation in the chick embryo. Anat Rec 193:131–148Google Scholar
  17. Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376Google Scholar
  18. Schoenwolf GC, Chandler NB, Smith JL (1985) Analysis of the origin and early fates of neural crest cells in caudal regions of avian embryos. Dev Biol 10:467–479Google Scholar
  19. Švajger A, Kostović-Knezević Lj, Bradamante Ž, Wrischer M (1985) Tail gut formation in the rat embryo. Roux's Arch Dev Biol 194:429–432Google Scholar
  20. Švajger A, Levak-Švajger B, Škreb N (1986) Rat embryonic ectoderm as renal isograft. J Embryol Exp Morphol 94:1–27Google Scholar
  21. Tam PPL (1984) The histogenetic capacity of tissues in the caudal end of the embryonic axes of the mouse. J Embryol Exp Morphol 82:253–266Google Scholar
  22. Veini M, Bellairs R (1991) Early mesoderm differentiation in the chick embryo. Anat Embryol 183:143–149Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Srećko Gajović
    • 1
  • Ljiljana Kostović-Knežević
    • 1
  • Anton Švajger
    • 1
  1. 1.Department of Histology and Embryology, Faculty of MedicineUniversity of ZagrebZagrebCroatia

Personalised recommendations