, Volume 195, Issue 4, pp 519–524 | Cite as

Low-CO2-inducible protein synthesis in the green alga Dunaliella tertiolecta

  • Ziyadin Ramazanov
  • Pedro A. Sosa
  • Margaret C. Henk
  • Miguel Jiménez del Rio
  • Juan Luis Gómez-Pinchetti
  • Guillermo García Reina


In the green marine alga Dunaliella tertiolecta, a CO2-concentrating mechanism is induced when the cells are grown under low-CO2 conditions (0.03% CO2). To identify proteins induced under low-CO2 conditions the cells were labelled with 35SO42−, and seven polypeptides with molecular weights of 45, 47, 49, 55, 60, 68 and 100 kDa were detected. The induction of these polypeptides was observed when cells grown in high CO2 (5% CO2 in air) were switched to low CO2, but only while the cultures were growing in light. Immunoblot analysis of total cell protein against pea chloroplastic carbonic anhydrase polyclonal antibodies showed immunoreactive 30-kDa bands in both high- and low-CO2-grown cells and an aditional 49-kDa band exclusively in low-CO2-grown cells. The 30-kDa protein was shown to be located in the chloroplast. Western blot analysis of the plasmamembrane fraction against corn plasma-membrane AT-Pase polyclonal antibodies showed 60-kDa bands in both high- and low-CO2 cell types as well as an immunoreactive 100-kDa band occurring only in low-CO2-grown cells. These results suggest that there are two distinct forms of both carbonic anhydrase and plasma-membrane ATPase, and that one form of each of them can be regulated by the CO2 concentration.

Key words

ATPase Carbonic anhydrase CO2-concentrating mechanism Dunaliella Protein synthesis Photosynthesis 



carbonic anhydrase


dissolved inorganic carbon (CO2+ HCO3)


CO2-concentrating mechanism

low CO2

air containing 0.03% CO2

high CO2

air supplemented with 5% CO2 (v/v)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizawa, K., Miyachi, S. (1984) Carbonic anhydrase located on cell surface increases the affinity for inorganic carbon in photosynthesis of Dunaliella tertiolecta. FEBS Lett. 173, 41–44Google Scholar
  2. Aizawa, K., Miyachi, S. (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Micro Rev. 39, 215–233Google Scholar
  3. Badger, M.R. (1987) The CO2 concentrating mechanism in aquatic phototrophs. In: The biochemistry of plants: a comprehensive treatise, vol. 10: Photosynthesis, pp. 219–274, Hatch, M.D., Boardman, N.K., eds. Academic Press, New YorkGoogle Scholar
  4. Badger, M.R., Kaplan, A., Berry, J.A. (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii: evidence for a carbon dioxide concentrating mechanism. Plant Physiol. 66, 407–413Google Scholar
  5. Beardall, J. (1981) CO2 accumulation by Chlorella saccharophila (Chlorophyceae) at low external pH: evidence for the active transport of inorganic carbon at the chloroplast envelope. J. Phycol. 17, 371–373Google Scholar
  6. Beardall, J., Raven, J. (1981) Transport of inorganic carbon and the CO2 concentrating mechanism in Chlorella emersonii (Chlorophyceae). J. Phycol. 17, 134–141Google Scholar
  7. Booth, W.A., Beardall, J. (1991) Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia 30, 220–225Google Scholar
  8. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72, 248–254CrossRefPubMedGoogle Scholar
  9. Coleman, J.R., Grossman, A.R. (1984) Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO2. Proc. Natl. Acad. Sci. USA 81, 6049–6053Google Scholar
  10. Dionisio-Sese, M.L., Miyachi, S. (1992) The effect of sodium chloride on carbonic anhydrase activity in marine microalgae. J. Phycol. 28, 619–624Google Scholar
  11. Fukuzawa, H., Fujiwara, S., Yamamoto, Y, Dionosio-Sese, M.L., Miy-achi, S. (1990) cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: Regulation by environmental CO2 concentration. Proc. Natl. Acad. Sci. USA, 87, 4383–4387Google Scholar
  12. Gehl, K.A., Colman, B., Sposato, L.M. (1990) Mechanism of inorganic carbon uptake in Chlorella saccharophila: the lack of involvement of carbonic anhydrase. J. Exp. Bot. 41, 1385–1391Google Scholar
  13. Geraghty, A.M., Anderson, J.C., Spalding, M.H. (1990) A 36 kDa kilodalton limiting-CO2 induced polypeptide of Chlamydomonas is distinct from 37 kilodalton periplasmic carbonic anhydrase. Plant Physiol. 93, 116–121Google Scholar
  14. Gómez-Pinchetti, J.L., Ramazanov, Z., Fontes, A., García Reina, G. (1992) Photosynthetic characteristics of Dunaliella salina (Chlorophyceae, Dunaliellales) in relation to β-carotene content. J. Appl. Phycol. 4, 11–15Google Scholar
  15. Goyal, A., Tolbert, N.E. (1989) Uptake of inorganic carbon by isolated chloroplasts from air-adapted Dunaliella. Plant Physiol. 89, 1264–1269Google Scholar
  16. Goyal, A., Shiraiwa, Y, Husic, D.H., Tolbert, N.E. (1992) External and internal carbonic anhydrase in Dunaliella species. Mar. Biol. 113, 349–355Google Scholar
  17. Husic, H.D., Kitayama, M., Togasaki, R.K., Moroney, J.V., Morris, K.L., Tolbert, N.E. (1989) Identification of intracellular carbonic anhydrase in Chlamydomonas reinhardtii which is distinct from the periplasmic form of the enzyme. Plant Physiol. 89, 904–909Google Scholar
  18. Jiménez del Río, M., Ramazanov, Z., García-Reina, G. (1994) Dark induction of nitrate reductase in the halophylic alga Dunaiiella salina. Planta 192, 40–45Google Scholar
  19. Karlsson, J., Ramazanov, Z., Hiltonnen, TH., Gardestrom, P., Sa-muelsson, G. (1994) Effect of vanadate on photosynthesis and the ATP/ADP ratio in Chlamydomonas reinhardtii. Planta 192, 46–51Google Scholar
  20. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685PubMedGoogle Scholar
  21. Larsson, C. (1985) Plasma membranes. In: Modern methods of plant analysis, vol. 1, pp. 85–104, Linskens, H.F., Jackson, J.F., eds. Springer-Verlag, BerlinGoogle Scholar
  22. Manuel, L.J., Moroney, J.V. (1988) Inorganic carbon accumulation in Chlamydomonas reinhardtii: New proteins are made during adaption to low CO2. Plant Physiol. 88, 491–496Google Scholar
  23. Marcus, Y, Volokita, M., Kaplan, A. (1984) The location of the transporting system for inorganic carbon and the nature of the form translocated in Chlamydomonas reinhardtii. J. Exp. Bot. 35, 1136–1144Google Scholar
  24. Martinez, F., Villarejo, A., Ramazanov, Z., Orus, M.I. (1992) Carbonic anhydrase independent stimulation of inorganic carbon fixation mediated by glucose. In: Research in photosynthesis, vol. 3, pp. 803–806, Murata, N., ed. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  25. Moroney, J.V., Mason, C.B. (1991) The role of the chloroplast in inorganic carbon acquisition by Chlamydomonas reinhardtii. Can. J. Bot. 69, 1017–1024Google Scholar
  26. Pick, U. (1992) ATPases and ion transport in Dunaliella. In: Dunaliella: Physiology, biochemistry and biotechnology, pp. 63–97, Avron, M., Ben-Amotz, A., eds. CRC Press, Boca Raton, Florida, USAGoogle Scholar
  27. Pronina, N.A., Ramazanov, Z., Semenenko, V.E. (1981) Carbonic anhydrase activity of Chlorella cells as a function of CO2 concentration. Fiziol. Rast. [In Russ.] 28, 494–502Google Scholar
  28. Ramazanov, Z., Cardenas, J. (1992) Inorganic carbon transport across cell compartments of the halotolerant alga Dunaliella salina. Physiol. Plant. 85, 121–128Google Scholar
  29. Ramazanov, Z., Mason, C., Geraghty, A., Spalding, M., Moroney, J. (1993) The low CO2-inducible 36-kilodalton protein is localized to the chloroplast envelope of Chlamydomonas reinhardtii. Plant Physiol. 101, 1195–1999Google Scholar
  30. Raven, J.A., Lucas, W.J. (1985) The energetics of carbon acquisition. In: Inorganic carbon uptake by aquatic photosynthetic organisms, pp. 305–324, Lucas, W.J., Berry, J.A., eds. American Society of Plant Physiologists, Rockville, Mo., USAGoogle Scholar
  31. Rawat, M., Moroney, J.V. (1991) Partial characterization of a new isoenzyme of carbonic anhydrase isolated from Chlamydomonas reinhardtii. J. Biol. Chem. 266, 9719–9723Google Scholar
  32. Rotatore, C., Roger, R.L., Colman, B. (1992) Active uptake of CO2 during photosynthesis in the green alga Eremosphaera viridis is mediated by a CO2-ATPase. Planta 188, 539–545Google Scholar
  33. Samuelsson, G., Palmqvist, K., Ramazanov, Z., Sundblad, L-G., (1990) Photosynthetic acclimation to low carbon concentrations in Chamydomonas reinhardtii. In: Current research in photosynthesis, vol. 4, pp. 18441–18448, Baltscheffsky, M., ed. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  34. Spalding, M.H., Spreitzer, R.J., Ogren, W.L. (1983) Carbonic anhydrase deficient mutant of Chlamydomonas reinhardtii requires elevated carbon dioxide concentrations for photoautotrophic growth. Plant Physiol. 73, 268–272Google Scholar
  35. Spalding, M.H., Jeffrey M. (1989) Membrane-associated polypeptides induced in Chlamydomonas reinhardtii by limiting CO2 concentration. Plant Physiol. 89, 133–137Google Scholar
  36. Spalding, M., Winder, T.L., Anderson, J.C., Geraghty, A.M., Marek, L.F. (1991) Changes in protein and gene expression during induction of the CO2-concentrating mechanism in wild-type and mutant Chlamydomonas. Can. J. Bot. 69, 1008–1016Google Scholar
  37. Sültemeyer, D.F., Fock, H.P., Canvin, D.T. (1990) Mass spectrometric measurement of intracellular carbonic anhydrase activity in high and low Ci cells of Chlamydomonas. Studies using 18O exchange with 13C/18O labeled bicarbonate. Plant Physiol. 94, 1250–1257Google Scholar
  38. Sültemeyer, D.F., Schmidt, C., Fock, H.P. (1993) Carbonic anhydrase in higher plants and aquatic microorganisms. Physiol. Plant. 88, 179–190Google Scholar
  39. Thielmann, J., Tolbert, N.E., Goyal, A., Senger, H. (1990) Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol. 92, 622–629Google Scholar
  40. Thielmann, J., Goyal, A., Tolbert N.E. (1992) Two polypeptides in the inner chloroplast envelope of Dunaliella tertiolecta induced by low CO2. Plant Physiol. 100, 2113–2115Google Scholar
  41. Widell, S. (1987) Purification of plasmalemma with aqueous polymer two-phase partition. Physiol. Plant. 69, 727–730Google Scholar
  42. Wintermans, J.F.G., De Mots, A. (1965) Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109, 448–453Google Scholar
  43. Zenvirth, D., Kaplan, A. (1981) Uptake and efflux of inorganic carbon in Dunaliella salina. Planta 152, 8–12Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Ziyadin Ramazanov
    • 1
  • Pedro A. Sosa
    • 2
  • Margaret C. Henk
    • 3
  • Miguel Jiménez del Rio
    • 2
  • Juan Luis Gómez-Pinchetti
    • 2
  • Guillermo García Reina
    • 2
  1. 1.Department of BotanyLouisiana State UniversityBaton RougeUSA
  2. 2.Instituto de Algologia AplicadaUniversidad de Las PalmasLas PalmasSpain
  3. 3.Department of MicrobiologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations