Advertisement

Planta

, Volume 190, Issue 1, pp 75–87 | Cite as

Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures

Reactions with monolignols and lignin model compounds
  • Raja Sterjiades
  • Jeffrey F. D. Dean
  • Gary Gamble
  • David S. Himmelsbach
  • Karl-Erik L. Eriksson
Article

Abstract

We have investigated the abilities of extracellular enzymes from dark-grown cell-suspension cultures of sycamore maple (Acer pseudoplatanus L.) to oxidize monolignols, the precursors for lignin biosynthesis in plants, as well as a variety of other lignin-related compounds. Laccase and peroxidase both exist as a multiplicity of isoenzymes in filtrates of spent culture medium, but their abilities to produce water-insoluble, dehydrogenation polymers (DHPs) from the monolignols (in the presence of hydrogen peroxide for the peroxidase reaction) appear identical whether or not the enzymes are purified from the concentrated filtrates or left in a crude mixture. The patterns of bonds formed in these DHPs are identical to those found in DHPs synthesized using horseradish peroxidase or fungal laccase, and many of these bonds are found in the natural lignins extracted from different plant sources. On the other hand, sycamore maple laccase is very much less active on phenolic substrates containing multiple aromatic rings than is sycamore maple peroxidase. We suggst that whereas laccase may function during the early stages of lignification to polymerize monolignols into oligo-lignols, cell-wall peroxidases may function when H2O2 is produced during the later stages of xylem cell development or in response to environmental stresses.

Key words

Acer (lignin biosynthesis) Cell wall p-Diphenol: O2 oxidoreductase Lignification Phenolox idase 

Abbreviations

DHP

dehydrogenation polymer

IEF

isoelectric focuring

NMR

nuclear magnetic resonance

PAGE

polyacrylamide gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostol, I., Heinstein, P.F., Low, P.S. (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 90, 109–116Google Scholar
  2. Bax, A., Summer, M. (1986) 1H and 13C assignments from sensitivity enhanced detection of heteronuclear multiple bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108, 2093–2094Google Scholar
  3. Bligny, R., Gaillard, J., Douce, R. (1986) Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Effects of a copper deficiency. Biochem. J. 237, 583–588Google Scholar
  4. Braunschweiler, L., Ernst, R.R. (1983) Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. Mag. Res. 53, 521–528Google Scholar
  5. Brunow, G., Ede, R.M., Simola, L.K., Lemmetyninen, J. (1990) Lignins released from Picea abies suspension cultures-true native spruce lignins? Phytochemistry 29, 2535–2538Google Scholar
  6. Carcellar, M., Davey, M.R., Fowler, M.W., Street, H.E. (1971) The influence of sucrose, 2,4-D and kinetin on the growth, fine structure, and lignin content of cultured sycamore cells. Protoplasma 73, 367–385Google Scholar
  7. Chum, H.L., Johnson, D.K., Tucker, M.P., Himmel, M.E. (1987) Some aspects of lignin characterization by high performance size exclusion chromatography using styrene divinylbenzene copolymer gels. Holzforschung 41, 97–108Google Scholar
  8. Dean, J.F.D., Eriksson, K-E.L. (1992) Biotechnological modification of lignin structure and composition in forest trees. Holzforschung 46, 135–147Google Scholar
  9. Dean, J.F.D., Gamble, H.R., Anderson, J.D. (1989) The ethylene biosynthesis-inducing xylanase: Its induction in Trichoderma viride and certain plant pathogens. Phytopathology 79, 1071–1078Google Scholar
  10. Downes, G., Turvey, N.D. (1986) Reduced lignification in Pinus radiata D. Don. Aust. For. Res. 16, 371–377Google Scholar
  11. Downes, G., Turvey, N.D. (1990) The effect of nitrogen and copper on characteristics of wood tissue in Pinus radiata. Can. J. For. Res. 20, 1369–1377Google Scholar
  12. Downes, G., Ward, J.V., Turvey, N.D. (1991) Lignin distribution across tracheid cell walls of poorly lignified wood from deformed copper deficient Pinus radiata (D. Don). Wood Sci. Technol. 25, 7–14Google Scholar
  13. Driouich, A., Lainé, A-C., Vian, B., Faye, L. (1992) Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J. 2, 13–24Google Scholar
  14. Ellwardt, P., Haider, K., Ernst, L. (1981) Untersuchungen des mikrobiellen Ligninabbaues durc 13C-NMR-Spektroskopie an spezifisch 13C-angereichertem DHP-Lignin aus Coniferylalkohol. Holzforschung 35, 103–109Google Scholar
  15. Elstner, E.F. (1982) Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33, 73–96Google Scholar
  16. Eriksson, K-E.L., Blanchette, R.A., Ander, P. (1990) Biodegradation of lignin. In: Microbial and enzymatic degradation of wood and wood Components, pp. 225–334. Springer-Verlag, BerlinGoogle Scholar
  17. Franke, W. (1960) Handbuch der Pflanzenphysiologie, vol. 12/1, p. 401. Springer-Verlag, BerlinGoogle Scholar
  18. Freudenberg, K. (1959) Biosynthesis and constitution of lignin. Nature 183, 1152–1155Google Scholar
  19. Freudenberg, K. (1968) The constitution and biosynthesis of lignin. In: Constitution and biosynthesis of lignin, pp. 45–122, Freudenberg, K., Neish, A.C., eds. Springer-Verlag, BerlinGoogle Scholar
  20. Freudenberg, K., Geiger, H. (1963) Pinoresinolid und andere Zwischenprodukte der Ligninbildung. Chem. Ber. 96, 1265–1270Google Scholar
  21. Freudenberg, K., Harkin, J., Reichert, M., Fukuzumi, T. (1958) Die an der Verholzung beteiligten Enzyme. Die Dehydrierung des Sinapinalkohols. Chem. Ber. 91, 581–590Google Scholar
  22. Graham, D. (1976) Anomalous water relations in copper-deficient wheat plants. Aust. J. Plant Physiol. 3, 229–236Google Scholar
  23. Greppin, H., Penel, C., Gaspar, Th. (1986) Molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, SwitzerlandGoogle Scholar
  24. Harkin, J.M., Obst, J.R. (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180, 296–298Google Scholar
  25. Higuchi, T. (1959) Studies on the biosynthesis of lignin. In: Biochemistry of wood, pp. 161–188, Kratzl, K., Billek, G., eds. Pergamon Press, New YorkGoogle Scholar
  26. Higuchi, T. (1985) Biosynthesis of lignin. In: Biosynthesis and biodegradation of wood components, pp. 141–160, Higuchi, T., ed. Academic Press, OrlandoGoogle Scholar
  27. Hoyle, M.C. (1977) High resolution of peroxidase-indoleacetic acid oxidase isozymes from horseradish by isoelectric focusing. Plant Physiol. 60, 787–793Google Scholar
  28. Kaplan, D.L. (1979) Reactivity of different oxidases with lignins and lignin model compounds. Phytochemistry 18, 1917–1919Google Scholar
  29. Kawai, S., Umezawa, T., Higuchi, T. (1988) Degradative mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262, 99–110Google Scholar
  30. Kirk, T.K., Brunow, G. (1988) Synthetic 14C-labeled lignins. Methods Enzymol. 161, 65–73Google Scholar
  31. Koblitz, H., Koblitz, D. (1964) Participation of cytochrome oxidase in lignification. Nature 204, 199–200Google Scholar
  32. Levine, W.G. (1966) Laccase, a review. In: The biochemistry of copper, pp. 371–387, Peisach, J., Aisen, P., Blumberg, W.E., eds. Academic Press, New YorkGoogle Scholar
  33. Lewis, N.G., Yamamoto, E. (1990) Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 455–496Google Scholar
  34. Li, Z.S., Attias, J., Thellier, M. (1990) Filtration stress-induced variations of peroxidase activity in cell suspension cultures of sycamore (Acer pseudoplatanus) cells. Physiol. Plant. 78, 22–28Google Scholar
  35. Marklund, S., Ohlsson, P-I., Opara, A., Paul, K-G. (1974) The substrate profiles of the acidic and slightly basic horseradish peroxidases. Biochim. Biophys. Acta 350, 304–313Google Scholar
  36. Mayer, A.M., Harel, E. (1979) Polyphenol oxidases in plants. Phytochemistry 18, 193–215Google Scholar
  37. Muller, L. (1979) Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. Chem. Soc. 101, 4481Google Scholar
  38. Nakamura, W. (1967) Studies on the biosynthesis of lignin. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J. Biochem. (Tokyo) 62, 54–61Google Scholar
  39. Nimz, H., Mogharab, I., Ludemann, H. (1974) 13C-Kernresonanz-spektren von Ligninen. Makromol. Chem. 175, 2563–2575Google Scholar
  40. Oldenkamp, L, Smilde, K.W. (1966) Copper deficiency in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Plant Soil 25, 150–152Google Scholar
  41. Quideau, S., Ralph, J. (1992) Facile large scale synthesis of coniferyl, sinapyl and p-coumaryl alcohol. J. Argic. Food Chem. 40, 1108–1110Google Scholar
  42. Robert, D., Chen, C. (1989) Biodegradation of lignin in spruce wood by Phanerochaete chrysosporium: Quantitative analysis of biodegraded spruce lignins by 13C NMR spectroscopy. Holzforschung 43, 323–332Google Scholar
  43. Sarkanen, K.V. (1971) Precursors and their polymerization. In: Lignins: Occurrence, formation, structure and reactions, pp. 145–163, Sarkanen, K.V., Ludwig, C.H., eds. Wiley-Interscience, New YorkGoogle Scholar
  44. Sarkanen, K.V., Ludwig, C.H. (1971) Definition and nomenclature. In: Lignins: Occurrence, formation, structure and reactions, pp. 1–18, Sarkanen, K.V., Ludwig, C.H., eds. Wiley-Interscience, New YorkGoogle Scholar
  45. Savidge, R.A., Randeniya, P.V. (1992) Cell wall-bound coniferylalcohol oxidase associated with lignification in conifers. Phytochemistry 31, 2959–2966Google Scholar
  46. Shannon, L.M., Kay, E., Lew, J.Y. (1966) Peroxidase isozymes from horseradish roots I. Isolation and physical properties. J. Biol. Chem. 241, 2166–2172Google Scholar
  47. Sterjiades, R., Dean, J.F.D., Eriksson, K-E.L. (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols, Plant Physiol. 99, 1162–1168Google Scholar
  48. Stevenson, T.T., McNeil, M., Darvill, A.G., Albersheim, P. (1986) Structure of plant cell walls XVIII. An analysis of the extracellular polysaccharides of suspension-cultured sycamore cells. Plant Physiol. 80, 1012–1019Google Scholar
  49. van Huystee, R.B. (1987) Some molecular aspects of plant peroxidase biosynthetic studies. Annu. Rev. Plant Physiol. 38, 205–219Google Scholar
  50. Wariishi, H., Morohoshi, N., Haraguchi, T. (1987) Degradation of lignin by the extracellular enzymes of Coriolus versicolor VII. Effective degradation of syringyl type β-aryl ether lignin model compounds by Laccase III. Mok. Gakk. 33, 892–898Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Raja Sterjiades
    • 1
  • Jeffrey F. D. Dean
    • 1
  • Gary Gamble
    • 2
  • David S. Himmelsbach
    • 2
  • Karl-Erik L. Eriksson
    • 1
  1. 1.Department of BiochemistryCenter for Biological Resource Recovery, University of GeorgiaAthensUSA
  2. 2.US Department of AgricultureRichard B. Russell Agricultural Research Center, Agricultural Research ServiceAthensUSA

Personalised recommendations