Journal of Comparative Physiology A

, Volume 179, Issue 3, pp 429–436 | Cite as

A new paradigm for operant conditioning of Drosophila melanogaster

  • G. Wustmann
  • K. Rein
  • R. Wolf
  • M. Heisenberg
Original Paper

Abstract

A freely walking single fly (Drosophila melanogaster) can be conditioned to avoid one side of a small test chamber if the chamber is heated whenever the fly enters this side. In a subsequent memory test without heat it keeps avoiding the heat-associated side. The memory mutants dunce1 and rutabaga1 successfully avoid the heated side but show no avoidance in the memory test. Wildtype flies can be trained to successively avoid alternating sides in a reversal conditioning experiment. Every single fly shows strong avoidance and a positive memory score. The new conditioning apparatus has several advantages: (1) Statistically significant learning scores can be obtained for individual flies. (2) Learning scores are obtained fully automatically without interference of the experimenter. (3) The procedure is fast, robust and requires little handling. Therefore the apparatus is suitable for largescale mutant screening. (4) Animals are not attached to a hook and thus can easily be used for breeding.

Key words

Place learning Reversal learning Mutant analysis Mutant screen 

Abbreviations

dnc dunce

gene

PI

performance Index

rut

rutabaga gene

S.E.M.

standard error of mean

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceves-Pina EO, Booker R, Duerr JS, Livingstone MS, Quinn WG, Smith RF, Sziber PP, Tempel BL, Tully TP (1983) Learning and memory in Drosophila, studies with mutants. Cold Spring Harbor Symp Quant Biol 48: 831–839Google Scholar
  2. Davis RL (1993) Mushroom bodies and Drosophila learning. Neuron 11: 1–14Google Scholar
  3. DeZazzo J, Tully T (1995) Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci 18: 212–218Google Scholar
  4. Dudai Y (1988) Neurogenetic dissection of learning and short-term memory in Drosophila. Anu Rev Neurosci 11: 537–563Google Scholar
  5. Dudai Y, Jan Y.-N, Byers D, Quinn WG, Benzer S (1976) dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73: 1684–1688Google Scholar
  6. Eyding D (1993) Lernen und Kurzzeitgedächtnis beim operanten Konditionieren auf visuelle Muster bei strukturellen und biochemischen Lernmutanten von Drosophila melanogaster. Diploma-Thesis, Julius-Maximilians-University, Würzburg, GermanyGoogle Scholar
  7. Gailey DA, Jackson FR, Siegel RW (1984) Conditioning mutations in Drosophila melanogaster affect an experience-dependent behavioral modification in courting males. Genetics 106: 613–623Google Scholar
  8. Heisenberg M (1989) Genetic approach to learning and memory (mnemogenetics) in Drosophila melanogaster. In: Rahmann H (ed) Fundamentals of memory formation: Neural plasticity and brain function. G Fischer, Stuttgart, pp 3–45Google Scholar
  9. Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenetics 2: 1–30Google Scholar
  10. Kandel E, Abel T (1995) Neuropeptides, adenylyl cyclase, and memory storage. Science 268: 825–826Google Scholar
  11. Lofdahl K, Hirsch J (1992) Shock-avoidance (via learning orientation) of electric current of measured intensity by Drosophila melanogaster. Dros Inf Serv 71: 169–171Google Scholar
  12. Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 71: 708–712Google Scholar
  13. Tully T (1991) Physiology of mutations affecting learning and memory in Drosophila — the missing link between gene product and behavior. Trends Neurosci 14: 163–164Google Scholar
  14. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 156: 263–277Google Scholar
  15. Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79: 35–47Google Scholar
  16. Wolf R, Heisenberg M (1991) Basic organization of operant behavior as revealed in Drosophila flight orientation. J Comp Physiol A 169: 699–705Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • G. Wustmann
    • 1
  • K. Rein
    • 1
  • R. Wolf
    • 1
  • M. Heisenberg
    • 1
  1. 1.Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für GenetikUniversität WürzburgWürzburgGermany

Personalised recommendations