Advertisement

Planta

, Volume 183, Issue 4, pp 536–541 | Cite as

The distribution of strictosidine-synthase activity and alkaloids in Cinchona plants

  • Rob J. Aerts
  • Anthony de Waal
  • Ed J. M. Pennings
  • Rob Verpoorte
Article

Abstract

The relation between the total alkaloid content and the activity of strictosidine synthase (EC 4.3.3.2), a key enzyme in alkaloid biosynthesis, was studied in distinct parts of six-month-old plants of Cinchona ledgeriana Moens. Strictosidine-synthase activity was present in the tops of the stems, including the young developing leaflets, and in the roots. The highest alkaloid contents of the plant were also found in these parts; however, the types of alkaloids differed, cinchophyllines being present in the aerial parts and quinoline alkaloids in the roots. In the stem and in old leaves, both strictosidine-synthase activity and alkaloid content were low. These results indicate that in young Cinchona plants the alkaloids are mainly synthesized in the axial extremities of the plant and that they are stored at the site of their synthesis.

Key words

Alkaloid localization Cinchona Stristosidine synthase 

Abbreviations

HPLC

high-performance liquid chromatography

SSS

strictosidine synthase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, R.J., Van der Leer, T., Van der Heijden, R., Verpoorte, R. (1990) Developmental regulation of alkaloid production in Cinchona seedlings. J. Plant Physiol. 136, 86–91Google Scholar
  2. Bernays, E.A., Chapman, R.F. (1976) Antifeedant properties of seedling grasses. In: The host-plant in relation to insect behaviour and reproduction, pp. 41–46, Jermy, T., ed. Symp. Biol. Hung. 16, Plenum Press, New YorkGoogle Scholar
  3. Cordell, G.A. (1981) Introduction to alkaloids. A biogenetic approach. Wiley, New YorkGoogle Scholar
  4. Davies, P.J. (1987) The plant hormones: their nature, occurrence, and functions. In: Plant hormones and their role in plant growth and development, pp. 1–11, Davies, P.J., ed. Martinus Nijhoff, DordrechtGoogle Scholar
  5. De Luca, V., Fernandez, J.A., Campbell, D., Kurz, W.G.W. (1988) Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 86, 447–450Google Scholar
  6. De Moerloose, P. (1954) Studie met behulp van het koolstofisotoop C14 over de biosynthese van de kina-alkaloïden. Pharm. Weekbl. 89, 541–572Google Scholar
  7. De Vrij, J.E. (1896) Kinologische Studien, no 10. Ned. Tijdschr. Pharm. Chem. Tox., 101–105Google Scholar
  8. Eilert, U., De Luca, V., Constabel, F., Kurz, W.G.W. (1987) Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase activities in cell suspension cultures of Catharanthus roseus. Arch. Biochem. Biophys. 254, 491–497Google Scholar
  9. Evans, W.H. (1987) In: Biological membranes, pp. 1–35, Findlay, J.B.C., Evans, W.H., eds. IRL Press, OxfordGoogle Scholar
  10. Frischknecht, P.M., Ulmer-Dufek, J., Baumann, T.W. (1986) Purine alkaloid formation in buds and developing leaflets of Coffea arabica: expression of an optimal defence strategy? Phytochemistry 25, 613–616Google Scholar
  11. Frischknecht, P.M., Bättig, M., Baumann, T.W. (1987) Effect of drought and wounding stress on indole alkaloid formation in Catharanthus roseus. Phytochemistry 26, 707–710Google Scholar
  12. Giroud, C., Van der Leer, T., Van der Heijden, R., Verpoorte, R., Heeremans, C.E.M., Niessen, W.M.A., Van der Greef, J. (1990) Thermospray liquid chromatography/mass spectrometry (TSP LC/MS) analysis of the alkaloids from Cinchona in vitro cultures: identification and fate of 10-methoxytryptamine. Planta Med., in pressGoogle Scholar
  13. Hampp, N., Zenk, M.H. (1988) Homogeneous strictosidine synthase from cell suspension cultures of Rauvolfia serpentina. Phytochemistry 27, 3811–3815Google Scholar
  14. Howell, K.E., Devaney, E., Gruenberg, J. (1989) Subcellular fractionation of tissue culture cells. TIBS 14, 44–47Google Scholar
  15. Hughes, D.W., Genest, K. (1973) Alkaloids. In: Phytochemistry, vol II, pp. 151–154, Miller, L.P., ed. Van Nostrand Reinhold, New YorkGoogle Scholar
  16. Keene, A.T., Anderson, L.A., Phillipson, J.D. (1983) Investigation of Cinchona leaf alkaloids by high-performance liquid chromatography. J. Chromatogr. 260, 123–128Google Scholar
  17. Klein Horsman-Relijk, J. (1960) Onderzoek naar de biosynthese van enkele alkaloïden in Cinchona succirubra P. Thesis, University of Amsterdam, The NetherlandsGoogle Scholar
  18. Knobloch, K.-H., Hansen, B., Berlin, J. (1981) Medium-induced formation of indole alkaloids and concomitant changes of inter-related enzyme activities in cell suspension cultures of Catharanthus roseus. Z. Naturforsch. 36c, 40–43Google Scholar
  19. Loomis, W.D., Battaile, J. (1966) Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5, 423–438Google Scholar
  20. McHale, D. (1986) The Cinchona tree. Biologist 33, 45–53Google Scholar
  21. Moens, J.C.B. (1882) De kinacultuur in Azië. Ernst en Co., BataviaGoogle Scholar
  22. Mulder-Krieger, Th., Verpoorte, R., De Water, A., Van Gessel, M., Van Oeveren, B.C.J.A., Baerheim Svendsen, A. (1982) Identification of the alkaloids and anthraquinones in Cinchona ledgeriana callus cultures. Planta Med. 46, 19–24Google Scholar
  23. Nagakura, N., Rüffer, M., Zenk, M.H. (1979) The biosynthesis of monoterpenoid indole alkaloids from strictosidine. J. Chem. Soc. (Perkin I), 2308–2312Google Scholar
  24. Noé, W., Berlin, J. (1985) Induction of de-novo synthesis of tryptophan decarboxylase in cell suspensions of Catharanthus roseus. Planta 166, 500–504Google Scholar
  25. Pennings, E.J.M., Van der Bosch, R., Van der Heijden, R., Van der Leer, T., Verpoorte, R. (1988) Rapid assay of tryptophan decarboxylase from plant cell cultures. In: Manipulating secondary metabolism in culture, pp. 79–82, Robins, R.J., Rhodes, M.J.C., eds. Cambridge University Press, CambridgeGoogle Scholar
  26. Pennings, E.J.M., Van der Bosch, R.A., Van der Heijden, R., Stevens, L.H., Duine, J.A., Verpoorte, R. (1989) Assay of strictosidine synthase from plant cell cultures by high-performance liquid chromatography. Anal. Biochem. 176, 412–415Google Scholar
  27. Pfitzner, U., Zenk, M.H. (1989) Homogeneous strictosidine synthase isoenzymes from cell suspension cultures of Catharanthus roseus. Planta Med. 55, 525–530Google Scholar
  28. Robinson, T. (1974) Metabolism and function of alkaloids in plants. Science 184, 430–435Google Scholar
  29. Scott, A.I., Lee, S.L., De Capite, P., Culver, M.G. (1977) The role of isovincoside (strictosidine) in the biosynthesis of the indole alkaloids. Heterocycles 7, 979–984Google Scholar
  30. Skinner, S.E., Walton, N.J., Robins, R.J., Rhodes, M.J.C. (1987) Tryptophan decarboxylase, strictosidine synthase and alkaloid production by Cinchona ledgeriana suspension cultures. Phytochemistry 26, 721–725Google Scholar
  31. Stahl, E. (1967) Dünnschicht-Chromatographie. Ein Laboratoriumshandbuch, p. 837. Springer, Berlin Heidelberg New YorkGoogle Scholar
  32. Stöckigt, J. (1980) The biosynthesis of heteroyohimbine-type alkaloids. In: Indole and biogenetically related alkaloids, p. 113, Phillipson, J.D., Zenk, M.H., eds. Academic Press, LondonGoogle Scholar
  33. Stöckigt, J., Zenk, M.H. (1977) Strictosidine (Isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J. Chem. Soc. Chem. Commun., 646–648Google Scholar
  34. Treimer, J.F., Zenk, M.H. (1979) Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur. J. Biochem. 101, 225–233Google Scholar
  35. Waller, G.R., Nowacki, E.K. (1978) Alkaloid biology and metabolism in plants, pp. 143–181. Plenum Press, New YorkGoogle Scholar
  36. Williams, R.D., Ellis, B.E. (1989) Age and tissue distribution of alkaloids in Papaver somniferum. Phytochemistry 28, 2085–2088Google Scholar
  37. Wink, M. (1987) Chemical ecology of quinolizidine alkaloids. In: Allelochemicals, pp. 524–533, Waller, G.R., ed. American Chemical Society, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Rob J. Aerts
    • 1
  • Anthony de Waal
    • 1
  • Ed J. M. Pennings
    • 1
  • Rob Verpoorte
    • 1
  1. 1.Department of PharmacognosyCenter for Bio-Pharmaceutical Sciences, Leiden UniversityRA LeidenThe Netherlands

Personalised recommendations