Human Genetics

, Volume 85, Issue 5, pp 527–530

The human QARS locus: assignment of the human gene for glutaminyl-tRNA synthetase to chromosome 1q32–42

  • N. Kunze
  • E. Bittler
  • R. Fett
  • B. Schray
  • H. Hameister
  • K. H. Wiedorn
  • R. Knippers
Original Investigations

Summary

We have used a cDNA encoding the core region of the human glutaminyl-tRNA synthetase to determine the chromosomal localization of the corresponding gene. Southern blots of restricted DNA from a panel of rodent-human cell lines and in situ chromosome hybridization gave identical results showing that the human gene locus for glutaminyl-tRNA synthetase resides on the distal long arm of chromosome 1. There are now nine mapped aminoacyl-tRNA synthetase genes in the human genome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bocian M, Walker AP (1987) Lip pits and deletion 1q32–41. Am J Med Genet 26:437–443Google Scholar
  2. Cirullo RE, Wasmuth JJ (1984) Assignment of the human MARS gene, encoding methionyl-tRNA synthetase to chromosome 12 using human x Chinese hamster cell hybrids. Cell Mol Genet 10:225–234Google Scholar
  3. Cirullo RE, Arredondo-Vega FX, Smith M, Wasmuth JJ (1983) Isolation and characterization of interspecific heat-resistant hybrids between a temperature-sensitive chinese hamster asparaginyl-tRNA synthetase mutant and normal human leukocytes: assignment of human asn S gene to chromosome 18. Somat Cell Genet 9:215–233Google Scholar
  4. Dana S, Wasmuth JJ (1982) Linkage of the leuS, emtB, and Chr genes on chromosome 5 in humans and expression of human genes encoding protein synthetic components in human-Chinese hamster hybrids. Somat Cell Genet 8:245–264Google Scholar
  5. Dang CV, Dang CV (1986) Multienzyme complex of amino-acyl-tRNA synthetases: an essence of being eukaryotic. Biochem J 239:249–255Google Scholar
  6. Denney RM, Craig IW (1976) Assignment of a gene for tryptophanyl transfer ribonucleic acid synthetase (E.C. 6.1.1.2) to human chromosome 14. Biochem Genet 14:99–117Google Scholar
  7. Deutscher MP (1984) The eukaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol 99:373–377Google Scholar
  8. Gerken SC, Wasmuth JJ, Arfin SM (1986) Threonyl-tRNA synthetase gene maps close to leucyl-tRNA gene on human chromosome 5. Somat Cell Mol Genet 12:519–522Google Scholar
  9. Hellkuhl B, Grzeschik K-H (1978) Assignment of a gene for arysulfatase B to human chromosome 5 using human-mouse somatic cell hybrids. Cytogenet Cell Genet 22:203–206Google Scholar
  10. Kontis KJ, Arfin SM (1989) Isolation of a cDNA clone for human threonyl-tRNA synthetase: amplification of the structural gene in borrelidin-resistant cell lines. Mol Cell Biol 9:1832–1838Google Scholar
  11. Kunze N, Yang GC, Jiang ZY, Hameister H, Adolph S, Wiedorn KH, Richter A, Knippers R (1989) Localization of the active type I DNA topoisomerase gene on human chromosome 20q11.2–13.1 and two pseudogenes on chromosomes 1q23–24 and 22q11.2–13.1. Hum Genet 84:6–10Google Scholar
  12. McAlpine PJ, Shows TB, Boucheix C, Stranc LC, Berent TG, Pakstis AJ, Douté RC (1989) Report of the nomenclature committee and the 1989 catalog of mapped genes. (10th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 51:15–66Google Scholar
  13. Mirande M, Waller JP (1989) Molecular cloning and primary structure of cDNA encoding the catalytic domain of rat liver aspartyl-tRNA synthetase. J Biol Chem 264:842–847Google Scholar
  14. Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 251:156–158Google Scholar
  15. Schimmel P (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of tRNA. Annu Rev Biochem 56:125–158Google Scholar
  16. Schmidt M, Ott G, Haaf T, Scheres JMJC (1985) Evolutionary conservation of fragile sites induced by 5-azacytidine and 5-azadesoxycytidine in man, gorilla, and chimpanzee. Hum Genet 71:342–350Google Scholar
  17. Sutherland GR, Parslow MI, Baker E (1985) New classes of common fragile sites induced by 5-azacytidine and bromodesoxyuridine. Hum Genet 69:233–237Google Scholar
  18. Thömmes P, Fett R, Schray B, Kunze N, Knippers R (1988) The core region of human glutaminyl-tRNA synthetase. Homologies with the Escherichia coli and yeast enzyme. Nucleic Acids Res 16:5391–5406Google Scholar
  19. Tsui FWL, Siminovitch L (1987) Isolation, structure and expression of mammalian genes for histidyl-tRNA synthetase. Nucleic Acids Res 15:3349–3367Google Scholar
  20. Walter B, Yen A, Wasmuth JJ, Smith M (1987) Selection of somatic cell hybrids containing human chromosome 9 using a temperature-sensitive CHO valyl-tRNA synthetase mutant. Cytogenet Cell Genet 46:710Google Scholar
  21. Wasmuth JJ, Carlock LR (1986) Chromosomal localization of human gene for histidyl-tRNA synthetase: clustering of genes encoding aminoacyl-tRNA synthetase on human chromosome 5. Somat Cell Mol Genet 12:513–517Google Scholar
  22. Wienker TF, Hudeck G, Bissbort S, Mayerova A, Mauff G, Bender K (1987) Linkage studies in a pedigree with Van der Woude syndrome. J Med Genet 24:160–162Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • N. Kunze
    • 1
  • E. Bittler
    • 1
  • R. Fett
    • 1
  • B. Schray
    • 1
  • H. Hameister
    • 2
  • K. H. Wiedorn
    • 3
  • R. Knippers
    • 1
  1. 1.Fakultät für Biologie der UniversitätKonstanzFederal Republic of Germany
  2. 2.Abteilung Klinische Genetik der UniversitätUlmFederal Republic of Germany
  3. 3.Institut für Humangenetik und Genetische Poliklinik der UniversitätMarburgFederal Republic of Germany

Personalised recommendations